Spaces:
Building
on
L4
Building
on
L4
Create utils/interop.py
Browse files- utils/interop.py +99 -0
utils/interop.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# utils/interop.py
|
2 |
+
from __future__ import annotations
|
3 |
+
import torch
|
4 |
+
|
5 |
+
def log_shape(tag: str, t: torch.Tensor) -> None:
|
6 |
+
try:
|
7 |
+
mn = float(t.min()) if t.numel() else float("nan")
|
8 |
+
mx = float(t.max()) if t.numel() else float("nan")
|
9 |
+
print(f"[interop] {tag}: shape={tuple(t.shape)} dtype={t.dtype} device={t.device} "
|
10 |
+
f"range=[{mn:.4f},{mx:.4f}]")
|
11 |
+
except Exception as e:
|
12 |
+
print(f"[interop] {tag}: <log failed: {e!r}>")
|
13 |
+
|
14 |
+
def _to_float01(x: torch.Tensor) -> torch.Tensor:
|
15 |
+
x = x.to(torch.float32)
|
16 |
+
if x.max() > 1.0:
|
17 |
+
x = x / 255.0
|
18 |
+
return x.clamp_(0.0, 1.0)
|
19 |
+
|
20 |
+
def _squeeze_bt(x: torch.Tensor) -> torch.Tensor:
|
21 |
+
# Drop singleton Time and extra Batch: (B,T,C,H,W) → (B,C,H,W) or (C,H,W)
|
22 |
+
if x.ndim == 5:
|
23 |
+
if x.shape[1] == 1:
|
24 |
+
x = x.squeeze(1) # drop T
|
25 |
+
if x.ndim == 5 and x.shape[0] == 1:
|
26 |
+
x = x.squeeze(0) # drop B
|
27 |
+
# Edge case: (1,1,3,H,W)
|
28 |
+
if x.ndim == 4 and x.shape[0] == 1 and x.shape[1] == 1 and x.shape[-3] == 3:
|
29 |
+
x = x.squeeze(1) # → (1,3,H,W)
|
30 |
+
return x
|
31 |
+
|
32 |
+
def ensure_image_nchw(
|
33 |
+
img: torch.Tensor,
|
34 |
+
device: torch.device | str = "cuda",
|
35 |
+
want_batched: bool = True,
|
36 |
+
) -> torch.Tensor:
|
37 |
+
img = img.to(device)
|
38 |
+
img = _squeeze_bt(img)
|
39 |
+
if img.ndim == 3:
|
40 |
+
# CHW or HWC
|
41 |
+
if img.shape[0] in (1,3):
|
42 |
+
chw = img
|
43 |
+
else:
|
44 |
+
chw = img.permute(2,0,1) # HWC→CHW
|
45 |
+
chw = _to_float01(chw.contiguous())
|
46 |
+
return chw.unsqueeze(0) if want_batched else chw
|
47 |
+
if img.ndim == 4:
|
48 |
+
N,A,B,C = img.shape
|
49 |
+
if A == 3:
|
50 |
+
nchw = img
|
51 |
+
elif C == 3:
|
52 |
+
nchw = img.permute(0,3,1,2) # NHWC→NCHW
|
53 |
+
else:
|
54 |
+
raise AssertionError(f"Cannot infer channels in image: {tuple(img.shape)}")
|
55 |
+
return _to_float01(nchw.contiguous())
|
56 |
+
raise AssertionError(f"Image must be 3D/4D; got {tuple(img.shape)}")
|
57 |
+
|
58 |
+
def ensure_mask_for_matanyone(
|
59 |
+
mask: torch.Tensor,
|
60 |
+
*,
|
61 |
+
idx_mask: bool = False,
|
62 |
+
threshold: float = 0.5,
|
63 |
+
keep_soft: bool = False,
|
64 |
+
device: torch.device | str = "cuda",
|
65 |
+
) -> torch.Tensor:
|
66 |
+
mask = mask.to(device)
|
67 |
+
mask = _squeeze_bt(mask)
|
68 |
+
|
69 |
+
if idx_mask:
|
70 |
+
# Return (H,W) labels {0,1}
|
71 |
+
if mask.ndim == 3:
|
72 |
+
if mask.shape[0] == 1:
|
73 |
+
idx = (mask[0] >= threshold).to(torch.long)
|
74 |
+
else:
|
75 |
+
idx = torch.argmax(mask, dim=0).to(torch.long)
|
76 |
+
idx = (idx > 0).to(torch.long)
|
77 |
+
elif mask.ndim == 2:
|
78 |
+
idx = (mask >= threshold).to(torch.long)
|
79 |
+
else:
|
80 |
+
raise AssertionError(f"idx mask must be 2D/3D; got {tuple(mask.shape)}")
|
81 |
+
return idx
|
82 |
+
|
83 |
+
# Channel mask path → (1,H,W) float [0,1]
|
84 |
+
if mask.ndim == 2:
|
85 |
+
out = mask.unsqueeze(0)
|
86 |
+
elif mask.ndim == 3:
|
87 |
+
if mask.shape[0] == 1:
|
88 |
+
out = mask
|
89 |
+
else:
|
90 |
+
# choose largest area channel
|
91 |
+
areas = mask.sum(dim=(-2,-1))
|
92 |
+
out = mask[areas.argmax():areas.argmax()+1]
|
93 |
+
else:
|
94 |
+
raise AssertionError(f"mask must be 2D/3D; got {tuple(mask.shape)}")
|
95 |
+
|
96 |
+
out = out.to(torch.float32)
|
97 |
+
if not keep_soft:
|
98 |
+
out = (out >= threshold).to(torch.float32)
|
99 |
+
return out.clamp_(0.0, 1.0).contiguous()
|