Spaces:
Building
on
L4
Building
on
L4
#!/usr/bin/env python3 | |
""" | |
Video Background Replacer (GPU-Optimized) | |
- MatAnyone (primary), SAM2 (mask seeding), rembg (fallback) | |
- K-Governor guards torch.topk/kthvalue (no __wrapped__ assumption) | |
- Adaptive MatAnyone loader (from_pretrained | constructor network/model | repo-id) | |
- Optional repo pinning via MATANYONE_COMMIT / SAM2_COMMIT | |
- First-run warmup β READY β before first request | |
- Robust Gradio input coercion (path | dict | file-like | PIL | NumPy) | |
- Alpha probing & (optional) stitching alpha_*.png sequences to a video | |
- Short-clip stabilizer (pre-roll) with correct trim | |
- Concurrency lock for MatAnyone core | |
""" | |
# ========================= | |
# EARLY env & imports | |
# ========================= | |
import os, sys, re, time, gc, shutil, subprocess, tempfile, threading, traceback, inspect, glob | |
from pathlib import Path | |
# ---- Thread/env sanitization (must run BEFORE numpy/torch/cv2) ---- | |
def _safe_int_env(var: str, default: int = 2, cap: int = 8) -> int: | |
v = os.environ.get(var, "").strip() | |
if not v or not re.fullmatch(r"\d+", v): | |
os.environ[var] = str(default); return default | |
iv = max(1, min(int(v), cap)) | |
os.environ[var] = str(iv); return iv | |
_safe_int_env("OMP_NUM_THREADS", 2, 8) | |
_safe_int_env("MKL_NUM_THREADS", 2, 8) | |
# General runtime defaults | |
os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "expandable_segments:True,max_split_size_mb:512") | |
os.environ.setdefault("CUDA_MODULE_LOADING", "LAZY") | |
os.environ.setdefault("PYTHONUNBUFFERED", "1") | |
os.environ.setdefault("TOKENIZERS_PARALLELISM", "false") | |
# MatAnyone prefs | |
os.environ.setdefault("MATANYONE_MAX_EDGE", "1024") | |
os.environ.setdefault("MATANYONE_TARGET_PIXELS", "1000000") | |
os.environ.setdefault("MATANYONE_WINDOWED", "1") | |
os.environ.setdefault("MATANYONE_WINDOW", "16") | |
os.environ.setdefault("MAX_MODEL_SIZE", "1920") | |
# CUDA + cuDNN | |
os.environ.setdefault("CUDA_LAUNCH_BLOCKING", "0") | |
os.environ.setdefault("TORCH_CUDNN_V8_API_ENABLED", "1") | |
os.environ.setdefault("CUDNN_BENCHMARK", "1") | |
# HF cache | |
os.environ.setdefault("HF_HOME", "./checkpoints/hf") | |
os.environ.setdefault("TRANSFORMERS_CACHE", "./checkpoints/hf") | |
os.environ.setdefault("HF_DATASETS_CACHE", "./checkpoints/hf") | |
os.environ.setdefault("HF_HUB_DISABLE_SYMLINKS", "1") | |
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "1") | |
os.environ.setdefault("HF_HUB_DISABLE_TELEMETRY", "1") | |
# Gradio | |
os.environ.setdefault("GRADIO_SERVER_NAME", "0.0.0.0") | |
os.environ.setdefault("GRADIO_SERVER_PORT", "7860") | |
# Features | |
os.environ.setdefault("USE_MATANYONE", "true") | |
os.environ.setdefault("USE_SAM2", "true") | |
os.environ.setdefault("SELF_CHECK_MODE", "false") | |
# Stabilizer defaults | |
os.environ.setdefault("MATANYONE_STABILIZE", "true") | |
os.environ.setdefault("MATANYONE_PREROLL_FRAMES", "12") | |
# Optional strict re-sanitization later | |
os.environ.setdefault("STRICT_ENV_GUARD", "1") | |
# ========================= | |
# Std imports (safe now) | |
# ========================= | |
import cv2 | |
import numpy as np | |
from PIL import Image | |
import gradio as gr | |
from moviepy.editor import VideoFileClip, ImageSequenceClip, concatenate_videoclips | |
print("=" * 50) | |
print("Application Startup at", os.popen('date').read().strip()) | |
print("=" * 50) | |
print("Environment Configuration:") | |
print(f"Python: {sys.version}") | |
print(f"Working directory: {os.getcwd()}") | |
print(f"CUDA_MODULE_LOADING: {os.getenv('CUDA_MODULE_LOADING')}") | |
print(f"OMP_NUM_THREADS: {os.getenv('OMP_NUM_THREADS')}") | |
print("=" * 50) | |
# ========================= | |
# Third-party repos & optional pinning | |
# ========================= | |
BASE_DIR = Path(__file__).resolve().parent | |
TP_DIR = BASE_DIR / "third_party" | |
CHECKPOINTS_DIR = BASE_DIR / "checkpoints" | |
TP_DIR.mkdir(exist_ok=True); CHECKPOINTS_DIR.mkdir(exist_ok=True) | |
def _git_clone_if_missing(url: str, path: Path, name: str): | |
if path.exists(): | |
return | |
print(f"Cloning {name}β¦") | |
try: | |
subprocess.run(["git", "clone", "--depth", "1", url, str(path)], check=True, timeout=300) | |
print(f"{name} cloned successfully") | |
except Exception as e: | |
print(f"Failed to clone {name}: {e}") | |
_git_clone_if_missing("https://github.com/facebookresearch/segment-anything-2.git", TP_DIR/"sam2", "SAM2") | |
_git_clone_if_missing("https://github.com/pq-yang/MatAnyone.git", TP_DIR/"matanyone", "MatAnyone") | |
def _checkout(repo_dir: Path, commit: str): | |
if not commit: | |
print(f"{repo_dir.name} not pinned (env is empty) β using current HEAD.") | |
return | |
try: | |
subprocess.run(["git", "-C", str(repo_dir), "fetch", "--depth", "1", "origin", commit], check=True) | |
subprocess.run(["git", "-C", str(repo_dir), "checkout", "--detach", commit], check=True) | |
print(f"Locked {repo_dir.name} to {commit}") | |
except Exception as e: | |
print(f"Warning: failed to lock {repo_dir.name} to {commit}: {e}") | |
MATANYONE_COMMIT = os.getenv("MATANYONE_COMMIT", "").strip() | |
SAM2_COMMIT = os.getenv("SAM2_COMMIT", "").strip() | |
_checkout(TP_DIR / "matanyone", MATANYONE_COMMIT) | |
_checkout(TP_DIR / "sam2", SAM2_COMMIT) | |
# Ensure vendored paths are importable | |
for p in [TP_DIR / "sam2", TP_DIR / "matanyone"]: | |
if p.exists() and str(p) not in sys.path: | |
sys.path.insert(0, str(p)); print(f"Added to path: {p}") | |
# ========================= | |
# K-Governor (with bypass; robust for PyTorch 2.2) | |
# ========================= | |
if os.getenv("SAFE_TOPK_BYPASS", "0") not in ("1","true","TRUE"): | |
import re as _re | |
def _write_safe_ops_file(pkg_root: Path): | |
utils_dir = pkg_root / "matanyone" / "utils" | |
if not utils_dir.exists(): utils_dir = pkg_root / "utils" | |
utils_dir.mkdir(parents=True, exist_ok=True) | |
(utils_dir / "safe_ops.py").write_text( | |
""" | |
import os | |
import torch | |
_VERBOSE = bool(int(os.environ.get("SAFE_TOPK_VERBOSE", "1"))) | |
# Robust for builds where topk/kthvalue are builtins without attributes. | |
_ORIG_TOPK = getattr(torch.topk, "__wrapped__", torch.topk) | |
_ORIG_KTH = getattr(torch.kthvalue, "__wrapped__", torch.kthvalue) | |
def _log(msg): | |
if _VERBOSE: | |
print(f"[K-Governor] {msg}") | |
def safe_topk(x, k, dim=None, largest=True, sorted=True): | |
if not isinstance(k, int): | |
k = int(k) | |
if dim is None: | |
dim = -1 | |
n = x.size(dim) | |
k_eff = max(1, min(k, int(n))) | |
if k_eff != k: | |
_log(f"torch.topk: clamp k {k} -> {k_eff} for dim={dim} shape={tuple(x.shape)}") | |
values, indices = _ORIG_TOPK(x, k_eff, dim=dim, largest=largest, sorted=sorted) | |
if k_eff < k: | |
pad = k - k_eff | |
pad_shape = list(values.shape); pad_shape[dim] = pad | |
pad_vals = values.new_full(pad_shape, float('-inf')) | |
pad_idx = indices.new_zeros(pad_shape, dtype=indices.dtype) | |
values = torch.cat([values, pad_vals], dim=dim) | |
indices = torch.cat([indices, pad_idx], dim=dim) | |
return values, indices | |
def safe_kthvalue(x, k, dim=None, keepdim=False): | |
if not isinstance(k, int): | |
k = int(k) | |
if dim is None: | |
dim = -1 | |
n = x.size(dim) | |
k_eff = max(1, min(k, int(n))) | |
if k_eff != k: | |
_log(f"torch.kthvalue: clamp k {k} -> {k_eff} for dim={dim} shape={tuple(x.shape)}") | |
return _ORIG_KTH(x, k_eff, dim=dim, keepdim=keepdim) | |
""".lstrip(), encoding="utf-8") | |
def _patch_matanyone_sources(repo_dir: Path) -> int: | |
root = repo_dir / "matanyone" | |
if not root.exists(): root = repo_dir | |
changed = 0 | |
header_import = "from matanyone.utils.safe_ops import safe_topk, safe_kthvalue\n" | |
pt = _re.compile(r"\btorch\.topk\s*\(") | |
pm = _re.compile(r"(\b[\w\.]+)\.topk\s*\(") | |
kt = _re.compile(r"\btorch\.kthvalue\s*\(") | |
km = _re.compile(r"(\b[\w\.]+)\.kthvalue\s*\(") | |
for py in root.rglob("*.py"): | |
try: | |
txt = py.read_text(encoding="utf-8"); orig = txt | |
if "safe_topk" not in txt and py.name != "__init__.py": | |
lines = txt.splitlines(keepends=True) | |
insert_at = 0 | |
for i, L in enumerate(lines[:80]): | |
if L.startswith(("import ","from ")): insert_at = i+1 | |
lines.insert(insert_at, header_import) | |
txt = "".join(lines) | |
txt = pt.sub("safe_topk(", txt) | |
txt = kt.sub("safe_kthvalue(", txt) | |
def _mt(m): return f"safe_topk({m.group(1)}, " | |
def _mk(m): return f"safe_kthvalue({m.group(1)}, " | |
txt = pm.sub(_mt, txt); txt = km.sub(_mk, txt) | |
if txt != orig: | |
py.write_text(txt, encoding="utf-8"); changed += 1 | |
except Exception as e: | |
print(f"[K-Governor] Patch warning on {py}: {e}") | |
return changed | |
try: | |
MATANY_REPO_DIR = TP_DIR / "matanyone" | |
_write_safe_ops_file(MATANY_REPO_DIR) | |
patched_files = _patch_matanyone_sources(MATANY_REPO_DIR) | |
print(f"[K-Governor] Patched MatAnyone sources: {patched_files} files updated.") | |
except Exception as e: | |
print(f"[K-Governor] Patch failed: {e}") | |
else: | |
print("[K-Governor] BYPASSED via SAFE_TOPK_BYPASS") | |
# ========================= | |
# Torch & device | |
# ========================= | |
TORCH_AVAILABLE = False; CUDA_AVAILABLE = False; GPU_NAME = "N/A"; DEVICE = "cpu" | |
try: | |
import torch | |
TORCH_AVAILABLE = True | |
CUDA_AVAILABLE = torch.cuda.is_available() | |
if CUDA_AVAILABLE: | |
torch.backends.cudnn.enabled = True | |
torch.backends.cudnn.benchmark = True | |
torch.backends.cudnn.deterministic = False | |
GPU_NAME = torch.cuda.get_device_name(0); DEVICE = "cuda" | |
gpu_memory = torch.cuda.get_device_properties(0).total_memory / 1024**3 | |
print(f"GPU: {GPU_NAME}") | |
print(f"VRAM: {gpu_memory:.1f} GB") | |
print(f"CUDA Capability: {torch.cuda.get_device_capability(0)}") | |
try: torch.cuda.set_per_process_memory_fraction(0.9) | |
except Exception: pass | |
print(f"Torch version: {torch.__version__}") | |
print(f"CUDA available: {CUDA_AVAILABLE}") | |
print(f"Device: {DEVICE}") | |
except Exception as e: | |
print(f"Torch not available: {e}") | |
# ========================= | |
# Light GPU monitor | |
# ========================= | |
class GPUMonitor: | |
def __init__(self): | |
self.monitoring = False | |
self.stats = {"gpu_util": 0, "memory_used": 0, "memory_total": 0} | |
def start_monitoring(self): | |
if not CUDA_AVAILABLE: return | |
self.monitoring = True | |
threading.Thread(target=self._monitor_loop, daemon=True).start() | |
def stop_monitoring(self): self.monitoring = False | |
def _monitor_loop(self): | |
while self.monitoring: | |
try: | |
if CUDA_AVAILABLE: | |
mem_used = torch.cuda.memory_allocated(0) / 1024**3 | |
mem_total = torch.cuda.get_device_properties(0).total_memory / 1024**3 | |
self.stats.update({ | |
"memory_used": mem_used, "memory_total": mem_total, | |
"memory_percent": (mem_used/mem_total)*100 if mem_total else 0 | |
}) | |
try: | |
import pynvml | |
pynvml.nvmlInit() | |
h = pynvml.nvmlDeviceGetHandleByIndex(0) | |
util = pynvml.nvmlDeviceGetUtilizationRates(h) | |
self.stats["gpu_util"] = util.gpu | |
except Exception: | |
pass | |
except Exception as e: | |
print(f"GPU monitoring error: {e}") | |
time.sleep(1) | |
def get_stats(self): return self.stats.copy() | |
gpu_monitor = GPUMonitor(); gpu_monitor.start_monitoring() | |
# ========================= | |
# SAM2 (verified micro-inference) | |
# ========================= | |
SAM2_IMPORTED = False; SAM2_AVAILABLE = False; SAM2_PREDICTOR = None | |
if TORCH_AVAILABLE and os.getenv("USE_SAM2","true").lower()=="true": | |
try: | |
print("Setting up SAM2β¦") | |
from hydra import initialize_config_dir, compose | |
from hydra.core.global_hydra import GlobalHydra | |
from sam2.build_sam import build_sam2 | |
from sam2.sam2_image_predictor import SAM2ImagePredictor | |
SAM2_IMPORTED = True | |
ckpt = Path("./checkpoints/sam2.1_hiera_tiny.pt") | |
ckpt.parent.mkdir(parents=True, exist_ok=True) | |
if not ckpt.exists(): | |
print("Downloading SAM2.1 checkpointβ¦") | |
import requests | |
url = "https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_tiny.pt" | |
r = requests.get(url, stream=True, timeout=60); r.raise_for_status() | |
with open(ckpt, "wb") as f: | |
for ch in r.iter_content(chunk_size=8192): | |
if ch: f.write(ch) | |
print(f"SAM2 checkpoint downloaded to {ckpt}") | |
if GlobalHydra().is_initialized(): | |
GlobalHydra.instance().clear() | |
config_dir = str(TP_DIR / "sam2" / "sam2" / "configs") | |
config_file = "sam2.1/sam2.1_hiera_t.yaml" | |
initialize_config_dir(config_dir=config_dir, version_base=None) | |
_ = compose(config_name=config_file) | |
model = build_sam2(config_file, str(ckpt), device="cuda" if CUDA_AVAILABLE else "cpu") | |
if CUDA_AVAILABLE and hasattr(torch, "compile"): | |
try: model = torch.compile(model, mode="max-autotune") | |
except Exception as _e: print(f"torch.compile not used: {_e}") | |
SAM2_PREDICTOR = SAM2ImagePredictor(model) | |
try: | |
dummy = np.zeros((64,64,3), dtype=np.uint8) | |
SAM2_PREDICTOR.set_image(dummy) | |
pts = np.array([[32,32]], dtype=np.int32); lbs = np.array([1], dtype=np.int32) | |
_m,_s,_l = SAM2_PREDICTOR.predict(point_coords=pts, point_labels=lbs, multimask_output=True) | |
SAM2_AVAILABLE = True; print("β SAM2 verified via micro-inference.") | |
except Exception as ver_e: | |
SAM2_AVAILABLE = False; SAM2_PREDICTOR = None | |
print(f"SAM2 verification failed: {ver_e}") | |
except Exception as e: | |
print(f"SAM2 setup failed: {e}") | |
# ========================= | |
# MatAnyone import (canonical first, fallback) | |
# ========================= | |
MATANYONE_IMPORTED = False; MatAnyInferenceCore = None | |
try: | |
from matanyone.inference.inference_core import InferenceCore as MatAnyInferenceCore | |
MATANYONE_IMPORTED = True | |
print("MatAnyone import OK: matanyone.inference.inference_core.InferenceCore") | |
except Exception as e1: | |
try: | |
from matanyone import InferenceCore as MatAnyInferenceCore | |
MATANYONE_IMPORTED = True | |
print("MatAnyone import OK: matanyone.InferenceCore") | |
except Exception as e2: | |
print(f"MatAnyone not importable: {e2 or e1}") | |
# ========================= | |
# rembg fallback | |
# ========================= | |
REMBG_AVAILABLE = False | |
try: | |
from rembg import remove | |
REMBG_AVAILABLE = True; print("rembg import OK (fallback ready).") | |
except Exception as e: | |
print(f"rembg not available: {e}") | |
# ========================= | |
# Background helpers | |
# ========================= | |
def make_solid(w, h, rgb): return np.full((h, w, 3), rgb, dtype=np.uint8) | |
def make_vertical_gradient(w, h, top_rgb, bottom_rgb): | |
top = np.array(top_rgb, dtype=np.float32); bot = np.array(bottom_rgb, dtype=np.float32) | |
t = np.linspace(0,1,h,dtype=np.float32)[:,None] | |
grad = (1-t)*top + t*bot; grad = np.clip(grad,0,255).astype(np.uint8) | |
return np.repeat(grad[None,...], w, axis=0).transpose(1,0,2) | |
def build_professional_bg(w, h, preset: str) -> np.ndarray: | |
p = (preset or "").lower() | |
if p == "office (soft gray)": return make_vertical_gradient(w,h,(245,246,248),(220,223,228)) | |
if p == "studio (charcoal)": return make_vertical_gradient(w,h,(32,32,36),(64,64,70)) | |
if p == "nature (green tint)":return make_vertical_gradient(w,h,(180,220,190),(100,160,120)) | |
if p == "brand blue": return make_solid(w,h,(18,112,214)) | |
return make_solid(w,h,(240,240,240)) | |
# ========================= | |
# MatAnyone wrapper (+ lock, adaptive constructor, alpha stitching) | |
# ========================= | |
class OptimizedMatAnyoneProcessor: | |
def __init__(self): | |
self.processor = None | |
self.device = "cuda" if (TORCH_AVAILABLE and CUDA_AVAILABLE) else "cpu" | |
self.initialized = False | |
self.verified = False | |
self.last_error = None | |
self.stabilize = os.getenv("MATANYONE_STABILIZE","true").lower()=="true" | |
try: self.preroll_frames = max(0, int(os.getenv("MATANYONE_PREROLL_FRAMES","12"))) | |
except Exception: self.preroll_frames = 12 | |
self._lock = threading.Lock() | |
# ---- Adaptive core constructor | |
def _construct_inference_core(self, network_or_repo): | |
# prefer classmethod if available | |
try: | |
if hasattr(MatAnyInferenceCore, "from_pretrained"): | |
return MatAnyInferenceCore.from_pretrained( | |
network_or_repo, | |
device=("cuda" if CUDA_AVAILABLE else "cpu") | |
) | |
except Exception: | |
pass | |
# try constructor with introspection | |
try: | |
sig = inspect.signature(MatAnyInferenceCore) | |
if isinstance(network_or_repo, str): | |
return MatAnyInferenceCore(network_or_repo) | |
if "network" in sig.parameters: | |
return MatAnyInferenceCore(network=network_or_repo) | |
if "model" in sig.parameters: | |
return MatAnyInferenceCore(model=network_or_repo) | |
return MatAnyInferenceCore(network_or_repo) | |
except Exception as e: | |
raise RuntimeError(f"InferenceCore construction failed: {type(e).__name__}: {e}") | |
# ---- Normalize return + disk probe + png sequence stitch | |
def _stitch_alpha_sequence(self, outdir: str, fps: float) -> str | None: | |
# common patterns | |
patt_list = ["alpha_%04d.png", "alpha_%03d.png", "alpha_%05d.png", "alpha_*.png"] | |
frames = [] | |
for patt in patt_list: | |
frames = sorted(glob.glob(os.path.join(outdir, patt.replace("%0", "*").replace("d","")))) | |
if frames: | |
break | |
if not frames: | |
return None | |
# read as float [0,1] | |
ary = [] | |
for p in frames: | |
im = cv2.imread(p, cv2.IMREAD_GRAYSCALE) | |
if im is None: continue | |
ary.append((im.astype(np.float32) / 255.0)) | |
if not ary: | |
return None | |
clip = ImageSequenceClip([f for f in ary], fps=max(1, int(round(fps or 24)))) | |
alpha_mp4 = tempfile.NamedTemporaryFile(delete=False, suffix="_alpha_seq.mp4").name | |
clip.write_videofile(alpha_mp4, audio=False, logger=None) | |
clip.close() | |
return alpha_mp4 | |
def _normalize_ret_and_probe(self, ret, outdir: str, fallback_fps: float = 24.0): | |
fg_path = alpha_path = None | |
if isinstance(ret, (list, tuple)): | |
if len(ret) >= 2: fg_path, alpha_path = ret[0], ret[1] | |
elif len(ret) == 1: alpha_path = ret[0] | |
elif isinstance(ret, str): | |
alpha_path = ret | |
def _valid(p: str) -> bool: | |
return p and os.path.exists(p) and os.path.getsize(p) > 0 | |
# probe common video names | |
if not _valid(alpha_path): | |
for cand in ("alpha.mp4","alpha.mkv","alpha.mov","alpha.webm"): | |
p = os.path.join(outdir, cand) | |
if _valid(p): | |
alpha_path = p; break | |
# try stitching sequences if needed | |
if not _valid(alpha_path): | |
stitched = self._stitch_alpha_sequence(outdir, fallback_fps) | |
if stitched and _valid(stitched): | |
alpha_path = stitched | |
return fg_path, alpha_path | |
def _warmup(self) -> None: | |
import numpy as _np, cv2 as _cv2, os as _os | |
from moviepy.editor import ImageSequenceClip as _ISC | |
with tempfile.TemporaryDirectory() as td: | |
frames = [] | |
for t in range(8): | |
fr = _np.zeros((64,64,3), _np.uint8); x = 8 + t*4 | |
_cv2.rectangle(fr, (x,20), (x+12,44), 200, -1); frames.append(fr) | |
vid = _os.path.join(td,"warmup.mp4"); _ISC(frames, fps=10).write_videofile(vid, audio=False, logger=None) | |
m = _np.zeros((64,64), _np.uint8); _cv2.rectangle(m,(24,24),(40,40),255,-1) | |
mask = _os.path.join(td,"mask.png"); _cv2.imwrite(mask, m) | |
outdir = _os.path.join(td,"out"); os.makedirs(outdir, exist_ok=True) | |
# ensure method exists | |
if not hasattr(self.processor, "process_video"): | |
if hasattr(self.processor, "process"): | |
self.processor.process_video = self.processor.process | |
else: | |
raise RuntimeError("MatAnyone core lacks process_video/process") | |
ret = self.processor.process_video(input_path=vid, mask_path=mask, output_path=outdir, max_size=512) | |
_fg, alpha = self._normalize_ret_and_probe(ret, outdir, fallback_fps=10) | |
if not alpha or not os.path.exists(alpha) or os.path.getsize(alpha) == 0: | |
raise RuntimeError("Warmup: MatAnyone produced no alpha") | |
def initialize(self) -> bool: | |
with self._lock: | |
if not MATANYONE_IMPORTED: | |
print("MatAnyone not importable; skipping init."); return False | |
if self.initialized and self.processor is not None: | |
return True | |
self.last_error = None | |
# HF path first | |
try: | |
print(f"Initializing MatAnyone (HF repo-id) on {self.device}β¦") | |
self.processor = self._construct_inference_core("PeiqingYang/MatAnyone") | |
if self.device == "cuda": | |
import torch as _t | |
_t.cuda.empty_cache(); _ = _t.rand(1, device="cuda") * 0.0 | |
# alias method if needed | |
if not hasattr(self.processor, "process_video") and hasattr(self.processor, "process"): | |
self.processor.process_video = self.processor.process | |
self._warmup() | |
self.verified = True; self.initialized = True | |
print("β MatAnyone initialized & warmed up (HF repo-id).") | |
return True | |
except Exception as e: | |
self.last_error = f"HF init failed: {type(e).__name__}: {e}" | |
print(self.last_error) | |
# Local ckpt fallback | |
try: | |
print("Falling back to local checkpoint init for MatAnyoneβ¦") | |
from hydra.core.global_hydra import GlobalHydra | |
if hasattr(GlobalHydra,"instance") and GlobalHydra().is_initialized(): | |
GlobalHydra.instance().clear() | |
import requests | |
from matanyone.utils.get_default_model import get_matanyone_model | |
ckpt_dir = Path("./pretrained_models"); ckpt_dir.mkdir(parents=True, exist_ok=True) | |
ckpt_path = ckpt_dir / "matanyone.pth" | |
if not ckpt_path.exists(): | |
url = "https://github.com/pq-yang/MatAnyone/releases/download/v1.0.0/matanyone.pth" | |
print(f"Downloading MatAnyone checkpoint from: {url}") | |
with requests.get(url, stream=True, timeout=180) as r: | |
r.raise_for_status() | |
with open(ckpt_path, "wb") as f: | |
for chunk in r.iter_content(chunk_size=8192): | |
if chunk: f.write(chunk) | |
print(f"Checkpoint saved to {ckpt_path}") | |
network = get_matanyone_model(str(ckpt_path), device=("cuda" if CUDA_AVAILABLE else "cpu")) | |
self.processor = self._construct_inference_core(network) | |
if self.device == "cuda": | |
import torch as _t | |
_t.cuda.empty_cache(); _ = _t.rand(1, device="cuda") * 0.0 | |
if not hasattr(self.processor, "process_video") and hasattr(self.processor, "process"): | |
self.processor.process_video = self.processor.process | |
self._warmup() | |
self.verified = True; self.initialized = True | |
print("β MatAnyone initialized & warmed up (local checkpoint).") | |
return True | |
except Exception as e: | |
self.last_error = f"Local init/warmup failed: {type(e).__name__}: {e}" | |
print(f"MatAnyone initialization failed: {self.last_error}") | |
traceback.print_exc(); return False | |
# ---- Pre-roll & trimming | |
def _build_preroll_concat(input_path: str, frames: int) -> tuple[str, float, float]: | |
clip = VideoFileClip(input_path) | |
fps = float(clip.fps or 24.0) | |
preroll_frames = max(0, frames) | |
if preroll_frames == 0: | |
out = input_path; clip.close(); return out, 0.0, fps | |
first = clip.get_frame(0) | |
pre = ImageSequenceClip([first]*preroll_frames, fps=max(1, int(round(fps)))) | |
concat = concatenate_videoclips([pre, clip]) | |
tmp = tempfile.NamedTemporaryFile(delete=False, suffix="_concat.mp4") | |
concat.write_videofile(tmp.name, audio=False, logger=None) | |
pre.close(); concat.close(); clip.close() | |
return tmp.name, preroll_frames / fps, fps | |
def _trim_head(video_path: str, seconds: float) -> str: | |
if seconds <= 0: return video_path | |
clip = VideoFileClip(video_path); dur = clip.duration or 0 | |
start = min(seconds, max(0.0, dur - 0.001)) | |
trimmed = tempfile.NamedTemporaryFile(delete=False, suffix="_trim.mp4").name | |
clip.subclip(start, None).write_videofile(trimmed, audio=False, logger=None) | |
clip.close(); return trimmed | |
def create_mask_optimized(self, video_path: str, output_path: str) -> str: | |
cap = cv2.VideoCapture(video_path); ret, frame = cap.read(); cap.release() | |
if not ret: raise ValueError("Could not read first frame from video.") | |
if SAM2_AVAILABLE and SAM2_PREDICTOR is not None: | |
try: | |
print("Creating mask with SAM2 (first frame)β¦") | |
rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
SAM2_PREDICTOR.set_image(rgb) | |
h, w = rgb.shape[:2] | |
pts = np.array([[w//2, h//2],[w//3, h//3],[2*w//3, 2*h//3]], dtype=np.int32) | |
lbs = np.array([1,1,1], dtype=np.int32) | |
masks, scores, _ = SAM2_PREDICTOR.predict(point_coords=pts, point_labels=lbs, multimask_output=True) | |
best = masks[np.argmax(scores)] | |
mask = ((best.astype(np.uint8) > 0).astype(np.uint8)) * 255 # 1ch u8 {0,255} | |
cv2.imwrite(output_path, mask) | |
print(f"Self-test mask uniques: {np.unique(mask//255)}") | |
return output_path | |
except Exception as e: | |
print(f"SAM2 mask creation failed; fallback rectangle. Error: {e}") | |
# Fallback: centered box | |
h, w = frame.shape[:2] | |
mask = np.zeros((h,w), dtype=np.uint8) | |
mx, my = int(w*0.15), int(h*0.10) | |
mask[my:h-my, mx:w-mx] = 255 | |
cv2.imwrite(output_path, mask); return output_path | |
def process_video_optimized(self, input_path: str, output_dir: str): | |
with self._lock: | |
if not self.initialized and not self.initialize(): | |
return None | |
try: | |
print("π MatAnyone processingβ¦") | |
if CUDA_AVAILABLE: | |
import torch as _t | |
_t.cuda.empty_cache(); gc.collect() | |
concat_path = input_path; preroll_sec = 0.0; fps_used = 24.0 | |
if self.stabilize and self.preroll_frames > 0: | |
concat_path, preroll_sec, fps_used = self._build_preroll_concat(input_path, self.preroll_frames) | |
print(f"[Stabilizer] Pre-rolled {self.preroll_frames} frames ({preroll_sec:.3f}s).") | |
mask_path = os.path.join(output_dir, "mask.png") | |
self.create_mask_optimized(input_path, mask_path) | |
if not hasattr(self.processor, "process_video") and hasattr(self.processor, "process"): | |
self.processor.process_video = self.processor.process | |
ret = self.processor.process_video( | |
input_path=concat_path, | |
mask_path=mask_path, | |
output_path=output_dir, | |
max_size=int(os.getenv("MAX_MODEL_SIZE","1920")) | |
) | |
fg_path, alpha_path = self._normalize_ret_and_probe(ret, output_dir, fallback_fps=fps_used) | |
if not alpha_path or not os.path.exists(alpha_path): | |
raise RuntimeError("MatAnyone finished without a valid alpha video on disk.") | |
if preroll_sec > 0.0: | |
alpha_path = self._trim_head(alpha_path, preroll_sec) | |
print(f"[Stabilizer] Trimmed {preroll_sec:.3f}s from alpha.") | |
if not os.path.exists(alpha_path) or os.path.getsize(alpha_path) == 0: | |
raise RuntimeError("Alpha exists but is empty/zero bytes after trim.") | |
return alpha_path | |
except Exception as e: | |
print(f"β MatAnyone processing failed: {e}") | |
traceback.print_exc() | |
return None | |
matanyone_processor = OptimizedMatAnyoneProcessor() | |
# ========================= | |
# rembg helpers | |
# ========================= | |
REMBG_AVAILABLE = REMBG_AVAILABLE | |
def process_frame_rembg_optimized(frame_bgr_u8, bg_img_rgb_u8): | |
if not REMBG_AVAILABLE: | |
return cv2.cvtColor(frame_bgr_u8, cv2.COLOR_BGR2RGB) | |
try: | |
frame_rgb = cv2.cvtColor(frame_bgr_u8, cv2.COLOR_BGR2RGB) | |
pil_im = Image.fromarray(frame_rgb) | |
from rembg import remove # lazy import in case plugin is heavy | |
result = remove(pil_im).convert("RGBA") | |
result_np = np.array(result) | |
if result_np.shape[2] == 4: | |
alpha = (result_np[:, :, 3:4].astype(np.float32) / 255.0) | |
comp = alpha * result_np[:, :, :3].astype(np.float32) + (1 - alpha) * bg_img_rgb_u8.astype(np.float32) | |
return comp.astype(np.uint8) | |
return result_np.astype(np.uint8) | |
except Exception as e: | |
print(f"rembg processing error: {e}") | |
return cv2.cvtColor(frame_bgr_u8, cv2.COLOR_BGR2RGB) | |
# ========================= | |
# Compositing | |
# ========================= | |
def composite_with_background(original_path, alpha_path, bg_path=None, bg_preset=None): | |
print("π¬ Compositing final videoβ¦") | |
orig_clip = VideoFileClip(original_path) | |
alpha_clip = VideoFileClip(alpha_path) | |
fps = orig_clip.fps or 24 | |
w, h = orig_clip.size | |
if bg_path: | |
bg_img = cv2.imread(bg_path) | |
if bg_img is None: raise ValueError(f"Could not read background image: {bg_path}") | |
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB); bg_img = cv2.resize(bg_img, (w, h)) | |
else: | |
bg_img = build_professional_bg(w, h, bg_preset) | |
def process_func(get_frame, t): | |
frame = get_frame(t) | |
a = alpha_clip.get_frame(t) | |
if a.ndim == 2: a = a[..., None] | |
elif a.shape[2] > 1: a = a[..., :1] | |
a = np.clip(a, 0.0, 1.0).astype(np.float32) | |
bg_f32 = (bg_img.astype(np.float32) / 255.0) | |
comp = a * frame.astype(np.float32) + (1.0 - a) * bg_f32 | |
return comp.astype(np.float32) | |
new_clip = orig_clip.fl(process_func).set_fps(fps) | |
output_path = "final_output.mp4" | |
new_clip.write_videofile(output_path, audio=False, logger=None) | |
alpha_clip.close(); orig_clip.close(); new_clip.close() | |
return output_path | |
# ========================= | |
# rembg whole-video fallback | |
# ========================= | |
def process_video_rembg_fallback(video_path, bg_image_path=None, bg_preset=None): | |
print("π Processing with rembg fallbackβ¦") | |
cap = cv2.VideoCapture(video_path); ret, frame = cap.read() | |
if not ret: cap.release(); raise ValueError("Could not read video") | |
h, w, _ = frame.shape; cap.release() | |
if bg_image_path: | |
bg_img = cv2.imread(bg_image_path) | |
if bg_img is None: raise ValueError(f"Could not read background image: {bg_image_path}") | |
bg_img = cv2.cvtColor(bg_img, cv2.COLOR_BGR2RGB); bg_img = cv2.resize(bg_img, (w, h)) | |
else: | |
bg_img = build_professional_bg(w, h, bg_preset) | |
clip = VideoFileClip(video_path) | |
fps = clip.fps or 24 | |
def process_func(get_frame, t): | |
fr = get_frame(t) | |
fr_u8 = (fr * 255).astype(np.uint8) | |
comp = process_frame_rembg_optimized(cv2.cvtColor(fr_u8, cv2.COLOR_RGB2BGR), bg_img) | |
return (comp.astype(np.float32) / 255.0) | |
new_clip = clip.fl(process_func).set_fps(fps) | |
output_path = "rembg_output.mp4" | |
new_clip.write_videofile(output_path, audio=False, logger=None) | |
clip.close(); new_clip.close() | |
return output_path | |
# ========================= | |
# Self-test harness | |
# ========================= | |
def _ok(flag): return "β " if flag else "β" | |
def self_test_cuda(): | |
try: | |
if not TORCH_AVAILABLE: return False, "Torch not importable" | |
if not CUDA_AVAILABLE: return False, "CUDA not available" | |
import torch as _t | |
a = _t.randn((1024,1024), device="cuda"); b = _t.randn((1024,1024), device="cuda") | |
c = (a @ b).mean().item(); return True, f"CUDA matmul ok, mean={c:.6f}" | |
except Exception as e: return False, f"CUDA op failed: {e}" | |
def self_test_ffmpeg_moviepy(): | |
try: | |
ff = shutil.which("ffmpeg") | |
if not ff: return False, "ffmpeg not found on PATH" | |
frames = [(np.zeros((64,64,3), np.uint8) + i).clip(0,255) for i in range(0,200,25)] | |
clip = ImageSequenceClip(frames, fps=4) | |
with tempfile.TemporaryDirectory() as td: | |
vp = os.path.join(td, "tiny.mp4") | |
clip.write_videofile(vp, audio=False, logger=None); clip.close() | |
clip_r = VideoFileClip(vp); _ = clip_r.get_frame(0.1); clip_r.close() | |
return True, "FFmpeg/MoviePy encode/decode ok" | |
except Exception as e: return False, f"FFmpeg/MoviePy test failed: {e}" | |
def self_test_rembg(): | |
try: | |
if not REMBG_AVAILABLE: return False, "rembg not importable" | |
from rembg import remove | |
img = np.zeros((64,64,3), dtype=np.uint8); img[:,:] = (0,255,0) | |
pil = Image.fromarray(img); out = remove(pil) | |
ok = isinstance(out, Image.Image) and out.size == (64,64) | |
return ok, "rembg ok" if ok else "rembg returned unexpected output" | |
except Exception as e: return False, f"rembg failed: {e}" | |
def self_test_sam2(): | |
try: | |
if not SAM2_IMPORTED: return False, "SAM2 not importable" | |
if not SAM2_PREDICTOR: return False, "SAM2 predictor not initialized" | |
dummy = np.zeros((64,64,3), dtype=np.uint8) | |
SAM2_PREDICTOR.set_image(dummy) | |
pts = np.array([[32,32]], dtype=np.int32); lbs = np.array([1], dtype=np.int32) | |
masks, scores, _ = SAM2_PREDICTOR.predict(point_coords=pts, point_labels=lbs, multimask_output=True) | |
ok = masks is not None and len(masks) > 0 | |
return ok, "SAM2 micro-inference ok" if ok else "SAM2 predict returned no masks" | |
except Exception as e: return False, f"SAM2 micro-inference failed: {e}" | |
def self_test_matanyone(): | |
try: | |
ok_init = matanyone_processor.initialize() | |
if not ok_init: return False, f"MatAnyone init failed: {getattr(matanyone_processor,'last_error','no details')}" | |
if not matanyone_processor.verified: return False, "MatAnyone missing process_video API" | |
with tempfile.TemporaryDirectory() as td: | |
frames = [] | |
for t in range(8): | |
frame = np.zeros((64,64,3), dtype=np.uint8) | |
x = 8 + t*4; cv2.rectangle(frame, (x,20),(x+12,44), 200, -1); frames.append(frame) | |
vid_path = os.path.join(td,"tiny_input.mp4") | |
clip = ImageSequenceClip(frames, fps=8); clip.write_videofile(vid_path, audio=False, logger=None); clip.close() | |
mask = np.zeros((64,64), dtype=np.uint8); cv2.rectangle(mask,(24,24),(40,40),255,-1) | |
mask_path = os.path.join(td,"mask.png"); cv2.imwrite(mask_path, mask) | |
alpha = matanyone_processor.process_video_optimized(vid_path, td) | |
if alpha is None or not os.path.exists(alpha): return False, "MatAnyone did not produce alpha video" | |
_alpha_clip = VideoFileClip(alpha); _ = _alpha_clip.get_frame(0.1); _alpha_clip.close() | |
return True, "MatAnyone process_video ok" | |
except Exception as e: return False, f"MatAnyone test failed: {e}" | |
def run_self_test() -> str: | |
lines = [] | |
lines.append("=== SELF TEST REPORT ===") | |
lines.append(f"Python: {sys.version.split()[0]}") | |
lines.append(f"Torch: {torch.__version__ if TORCH_AVAILABLE else 'N/A'} | CUDA: {CUDA_AVAILABLE} | Device: {DEVICE} | GPU: {GPU_NAME}") | |
lines.append(f"FFmpeg on PATH: {bool(shutil.which('ffmpeg'))}") | |
lines.append("") | |
tests = [("CUDA", self_test_cuda), ("FFmpeg/MoviePy", self_test_ffmpeg_moviepy), | |
("rembg", self_test_rembg), ("SAM2", self_test_sam2), ("MatAnyone", self_test_matanyone)] | |
for name, fn in tests: | |
t0 = time.time(); ok, msg = fn(); dt = time.time() - t0 | |
lines.append(f"{_ok(ok)} {name}: {msg} [{dt:.2f}s]") | |
return "\n".join(lines) | |
# ========================= | |
# Gradio input coercion helpers | |
# ========================= | |
def _coerce_video_to_path(video_file): | |
if video_file is None: | |
return None | |
if isinstance(video_file, str): | |
return video_file | |
if isinstance(video_file, dict) and "name" in video_file: | |
return video_file["name"] | |
return getattr(video_file, "name", None) | |
def _coerce_bg_to_path(bg_image, temp_dir): | |
"""Return filesystem path for background image, writing it to temp_dir if needed.""" | |
if bg_image is None: | |
return None | |
if isinstance(bg_image, str): | |
return bg_image | |
if isinstance(bg_image, dict) and "name" in bg_image: | |
return bg_image["name"] | |
if hasattr(bg_image, "name") and isinstance(bg_image.name, str): | |
return bg_image.name | |
if isinstance(bg_image, Image.Image): | |
p = os.path.join(temp_dir, "bg_uploaded.png") | |
bg_image.save(p); return p | |
if isinstance(bg_image, np.ndarray): | |
p = os.path.join(temp_dir, "bg_uploaded.png") | |
arr = bg_image | |
if arr.ndim == 3 and arr.shape[2] == 3: | |
cv2.imwrite(p, cv2.cvtColor(arr, cv2.COLOR_RGB2BGR)) | |
else: | |
cv2.imwrite(p, arr) | |
return p | |
return None | |
# ========================= | |
# Gradio callback | |
# ========================= | |
def gradio_interface_optimized(video_file, bg_image, use_matanyone=True, bg_preset="Office (Soft Gray)", stabilize=True, preroll_frames=12): | |
try: | |
if video_file is None: | |
return None, None, "Please upload a video." | |
print(f"UI types: video={type(video_file)}, bg={type(bg_image)}") | |
with tempfile.TemporaryDirectory() as temp_dir: | |
video_path = _coerce_video_to_path(video_file) | |
if not video_path or not os.path.exists(video_path): | |
return None, None, "Could not read the uploaded video path." | |
bg_path = _coerce_bg_to_path(bg_image, temp_dir) # may be None β preset is used | |
# reflect UI choices | |
matanyone_processor.stabilize = bool(stabilize) | |
try: | |
matanyone_processor.preroll_frames = max(0, int(preroll_frames)) | |
except Exception: | |
pass | |
start_time = time.time() | |
if use_matanyone and MATANYONE_IMPORTED: | |
if not matanyone_processor.initialized: | |
matanyone_processor.initialize() | |
if matanyone_processor.initialized and matanyone_processor.verified: | |
alpha_video_path = matanyone_processor.process_video_optimized(video_path, temp_dir) | |
if alpha_video_path is None: | |
out = process_video_rembg_fallback(video_path, bg_path, bg_preset=bg_preset) | |
method = "rembg (fallback after MatAnyone error)" | |
else: | |
out = composite_with_background(video_path, alpha_video_path, bg_path, bg_preset=bg_preset) | |
method = f"MatAnyone (GPU: {CUDA_AVAILABLE})" | |
else: | |
out = process_video_rembg_fallback(video_path, bg_path, bg_preset=bg_preset) | |
method = "rembg (MatAnyone not verified)" | |
else: | |
out = process_video_rembg_fallback(video_path, bg_path, bg_preset=bg_preset) | |
method = "rembg" | |
final_gpu = gpu_monitor.get_stats() | |
elapsed = time.time() - start_time | |
status = ( | |
f"β Processing complete\n" | |
f"Method: {method}\n" | |
f"Time: {elapsed:.2f}s\n" | |
f"Output: {out}\n\n" | |
f"GPU Stats:\n" | |
f"β’ Mem: {final_gpu.get('memory_used', 0):.2f}GB / {final_gpu.get('memory_total', 0):.2f}GB" | |
f" ({final_gpu.get('memory_percent', 0):.1f}%)\n" | |
f"β’ Util: {final_gpu.get('gpu_util', 0)}%\n" | |
f"β’ CUDA: {CUDA_AVAILABLE}" | |
) | |
return out, out, status | |
except Exception as e: | |
traceback.print_exc() | |
msg = ( | |
f"β Error: {e}\n" | |
f"- MatAnyone imported: {MATANYONE_IMPORTED}\n" | |
f"- MatAnyone initialized: {matanyone_processor.initialized}\n" | |
f"- MatAnyone verified: {matanyone_processor.verified}\n" | |
f"- MatAnyone last_error: {matanyone_processor.last_error}\n" | |
f"- SAM2 imported: {SAM2_IMPORTED}\n" | |
f"- SAM2 verified: {SAM2_AVAILABLE}\n" | |
f"- rembg: {REMBG_AVAILABLE}\n" | |
f"- CUDA: {CUDA_AVAILABLE}\n" | |
f"(see server logs for traceback)" | |
) | |
return None, None, msg | |
def gradio_run_self_test(): return run_self_test() | |
def show_matanyone_diag(): | |
try: | |
ok = matanyone_processor.initialized and matanyone_processor.verified | |
return "READY β " if ok else (matanyone_processor.last_error or "Not initialized yet") | |
except Exception as e: | |
return f"Diag error: {e}" | |
# ========================= | |
# UI | |
# ========================= | |
with gr.Blocks(title="Video Background Replacer - GPU Optimized", theme=gr.themes.Soft()) as demo: | |
gr.Markdown("# π¬ Video Background Replacer (GPU Optimized)") | |
gr.Markdown("All green checks are earned by real tests. No guesses.") | |
gpu_status = f"β {GPU_NAME}" if CUDA_AVAILABLE else "β CPU Only" | |
matany_status = "β Module Imported" if MATANYONE_IMPORTED else "β Not Importable" | |
sam2_status = "β Verified" if SAM2_AVAILABLE else ("β οΈ Imported but unverified" if SAM2_IMPORTED else "β Not Ready") | |
rembg_status = "β Ready" if REMBG_AVAILABLE else "β Not Available" | |
torch_status = "β GPU" if CUDA_AVAILABLE else "β CPU" | |
status_html = f""" | |
<div style='padding: 15px; background: #f8f9fa; border-radius: 8px; margin-bottom: 20px; border-left: 4px solid #6c757d;'> | |
<h4 style='margin-top: 0;'>π₯οΈ System Status (verified)</h4> | |
<strong>GPU:</strong> {gpu_status}<br> | |
<strong>Device:</strong> {DEVICE}<br> | |
<strong>MatAnyone module:</strong> {matany_status}<br> | |
<strong>MatAnyone ready:</strong> {"β Yes" if getattr(matanyone_processor, "verified", False) else "β No"}<br> | |
<strong>SAM2:</strong> {sam2_status}<br> | |
<strong>rembg:</strong> {rembg_status}<br> | |
<strong>PyTorch:</strong> {torch_status} | |
</div> | |
""" | |
gr.HTML(status_html) | |
with gr.Row(): | |
with gr.Column(): | |
video_input = gr.Video(label="πΉ Input Video") | |
bg_input = gr.Image(label="πΌοΈ Background Image (optional)", type="filepath") | |
bg_preset = gr.Dropdown( | |
label="π¨ Background Preset (if no image)", | |
choices=["Office (Soft Gray)","Studio (Charcoal)","Nature (Green Tint)","Brand Blue","Plain Light"], | |
value="Office (Soft Gray)", | |
) | |
use_matanyone = gr.Checkbox(label="π Use MatAnyone (GPU accelerated, best quality)", | |
value=MATANYONE_IMPORTED, interactive=MATANYONE_IMPORTED) | |
stabilize = gr.Checkbox(label="π§± Stabilize short clips (pre-roll first frame)", | |
value=os.getenv("MATANYONE_STABILIZE","true").lower()=="true") | |
preroll_frames = gr.Slider(label="Pre-roll frames", minimum=0, maximum=24, step=1, | |
value=int(os.getenv("MATANYONE_PREROLL_FRAMES","12"))) | |
process_btn = gr.Button("π Process Video", variant="primary") | |
gr.Markdown("### π Self-Verification"); selftest_btn = gr.Button("Run Self-Test") | |
selftest_out = gr.Textbox(label="Self-Test Report", lines=16) | |
gr.Markdown("### π MatAnyone Diagnostics"); mat_diag_btn = gr.Button("Show MatAnyone Diagnostics") | |
mat_diag_out = gr.Textbox(label="MatAnyone Last Error / Status", lines=6) | |
with gr.Column(): | |
output_video = gr.Video(label="β¨ Result") | |
download_file = gr.File(label="πΎ Download") | |
status_text = gr.Textbox(label="π Status & Performance", lines=8) | |
process_btn.click(fn=gradio_interface_optimized, | |
inputs=[video_input, bg_input, use_matanyone, bg_preset, stabilize, preroll_frames], | |
outputs=[output_video, download_file, status_text]) | |
selftest_btn.click(fn=gradio_run_self_test, inputs=[], outputs=[selftest_out]) | |
mat_diag_btn.click(fn=show_matanyone_diag, inputs=[], outputs=[mat_diag_out]) | |
gr.Markdown("---") | |
gr.Markdown(""" | |
**Notes** | |
- K-Governor clamps/pads Top-K inside MatAnyone to prevent 'k out of range' crashes. | |
- Short-clip stabilizer pre-roll is trimmed out of alpha automatically. | |
- SAM2 shows β only after a real micro-inference passes. | |
- FFmpeg/MoviePy, CUDA, and rembg are validated by actually running them. | |
""") | |
# ========================= | |
# Proactive warmup at boot (before UI render) | |
# ========================= | |
try: | |
if MATANYONE_IMPORTED and os.getenv("USE_MATANYONE","true").lower()=="true": | |
print("Warming up MatAnyoneβ¦") | |
matanyone_processor.initialize() | |
print("MatAnyone warmup complete.") | |
except Exception as e: | |
print(f"MatAnyone warmup failed (non-fatal): {e}") | |
traceback.print_exc() | |
# ========================= | |
# Late re-sanitization for external .env overrides | |
# ========================= | |
def _re_sanitize_threads(): | |
for v in ("OMP_NUM_THREADS", "MKL_NUM_THREADS"): | |
val = os.environ.get(v, "") | |
if not str(val).isdigit(): | |
os.environ[v] = "2" | |
print(f"{v} had invalid value; reset to 2") | |
if os.getenv("STRICT_ENV_GUARD","1") in ("1","true","TRUE"): | |
_re_sanitize_threads() | |
# ========================= | |
# Entrypoint / CLI self-test | |
# ========================= | |
if __name__ == "__main__": | |
if "--self-test" in sys.argv: | |
report = run_self_test(); print(report) | |
exit_code = 0 | |
for line in report.splitlines(): | |
if line.startswith("β"): exit_code = 2; break | |
sys.exit(exit_code) | |
print("\n" + "="*50) | |
print("π Starting GPU-optimized Gradio appβ¦") | |
print("URL: http://0.0.0.0:7860") | |
print(f"GPU Monitoring: {'Active' if CUDA_AVAILABLE else 'Disabled'}") | |
print("="*50 + "\n") | |
demo.launch(server_name="0.0.0.0", server_port=7860) | |