Spaces:
Runtime error
Runtime error
Create recognition.py
Browse files- recognition.py +207 -0
recognition.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from argparse import ArgumentParser
|
2 |
+
from itertools import groupby
|
3 |
+
import os
|
4 |
+
import cv2
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
from torchvision import transforms
|
8 |
+
import utils_
|
9 |
+
|
10 |
+
|
11 |
+
class BidirectionalLSTM(nn.Module):
|
12 |
+
def __init__(self, nIn, nHidden, nOut):
|
13 |
+
super(BidirectionalLSTM, self).__init__()
|
14 |
+
|
15 |
+
self.rnn = nn.LSTM(nIn, nHidden, bidirectional=True)
|
16 |
+
self.embedding = nn.Linear(nHidden * 2, nOut)
|
17 |
+
|
18 |
+
def forward(self, input):
|
19 |
+
recurrent, _ = self.rnn(input)
|
20 |
+
T, b, h = recurrent.size()
|
21 |
+
t_rec = recurrent.view(T * b, h)
|
22 |
+
|
23 |
+
output = self.embedding(t_rec) # [T * b, nOut]
|
24 |
+
output = output.view(T, b, -1)
|
25 |
+
|
26 |
+
return output
|
27 |
+
|
28 |
+
|
29 |
+
class CRNN(nn.Module):
|
30 |
+
def __init__(self, imgH, nc, nclass, nh, n_rnn=2, leakyRelu=False):
|
31 |
+
super(CRNN, self).__init__()
|
32 |
+
assert imgH % 16 == 0, "imgH has to be a multiple of 16"
|
33 |
+
|
34 |
+
ks = [3, 3, 3, 3, 3, 3, 2]
|
35 |
+
ps = [1, 1, 1, 1, 1, 1, 0]
|
36 |
+
ss = [1, 1, 1, 1, 1, 1, 1]
|
37 |
+
nm = [64, 128, 256, 256, 512, 512, 512]
|
38 |
+
|
39 |
+
cnn = nn.Sequential()
|
40 |
+
|
41 |
+
def convRelu(i, batchNormalization=False):
|
42 |
+
nIn = nc if i == 0 else nm[i - 1]
|
43 |
+
nOut = nm[i]
|
44 |
+
cnn.add_module(
|
45 |
+
"conv{0}".format(i), nn.Conv2d(nIn, nOut, ks[i], ss[i], ps[i])
|
46 |
+
)
|
47 |
+
if batchNormalization:
|
48 |
+
cnn.add_module("batchnorm{0}".format(i), nn.BatchNorm2d(nOut))
|
49 |
+
if leakyRelu:
|
50 |
+
cnn.add_module("relu{0}".format(i), nn.LeakyReLU(0.2, inplace=True))
|
51 |
+
else:
|
52 |
+
cnn.add_module("relu{0}".format(i), nn.ReLU(True))
|
53 |
+
|
54 |
+
convRelu(0)
|
55 |
+
cnn.add_module("pooling{0}".format(0), nn.MaxPool2d(2, 2)) # 64x16x64
|
56 |
+
convRelu(1)
|
57 |
+
cnn.add_module("pooling{0}".format(1), nn.MaxPool2d(2, 2)) # 128x8x32
|
58 |
+
convRelu(2, True)
|
59 |
+
convRelu(3)
|
60 |
+
cnn.add_module(
|
61 |
+
"pooling{0}".format(2), nn.MaxPool2d((2, 2), (2, 1), (0, 1))
|
62 |
+
) # 256x4x16
|
63 |
+
convRelu(4, True)
|
64 |
+
convRelu(5)
|
65 |
+
cnn.add_module(
|
66 |
+
"pooling{0}".format(3), nn.MaxPool2d((2, 2), (2, 1), (0, 1))
|
67 |
+
) # 512x2x16
|
68 |
+
convRelu(6, True) # 512x1x16
|
69 |
+
|
70 |
+
self.cnn = cnn
|
71 |
+
self.rnn = nn.Sequential(
|
72 |
+
BidirectionalLSTM(512, nh, nh), BidirectionalLSTM(nh, nh, nclass)
|
73 |
+
)
|
74 |
+
|
75 |
+
def forward(self, input):
|
76 |
+
# conv features
|
77 |
+
conv = self.cnn(input)
|
78 |
+
b, c, h, w = conv.size()
|
79 |
+
assert h == 1, "the height of conv must be 1"
|
80 |
+
conv = conv.squeeze(2)
|
81 |
+
conv = conv.permute(2, 0, 1) # [w, b, c]
|
82 |
+
|
83 |
+
# rnn features
|
84 |
+
output = self.rnn(conv)
|
85 |
+
|
86 |
+
return output
|
87 |
+
|
88 |
+
|
89 |
+
VOCAB = [
|
90 |
+
"BLANK",
|
91 |
+
"Z",
|
92 |
+
"B",
|
93 |
+
"4",
|
94 |
+
"X",
|
95 |
+
"R",
|
96 |
+
"2",
|
97 |
+
"U",
|
98 |
+
"D",
|
99 |
+
"G",
|
100 |
+
"Q",
|
101 |
+
"S",
|
102 |
+
"A",
|
103 |
+
"N",
|
104 |
+
"K",
|
105 |
+
"0",
|
106 |
+
"C",
|
107 |
+
"J",
|
108 |
+
"P",
|
109 |
+
"Y",
|
110 |
+
"H",
|
111 |
+
"7",
|
112 |
+
"W",
|
113 |
+
"V",
|
114 |
+
"5",
|
115 |
+
"F",
|
116 |
+
"L",
|
117 |
+
"8",
|
118 |
+
"1",
|
119 |
+
"I",
|
120 |
+
"T",
|
121 |
+
"M",
|
122 |
+
"3",
|
123 |
+
"O",
|
124 |
+
"9",
|
125 |
+
"E",
|
126 |
+
"6",
|
127 |
+
]
|
128 |
+
|
129 |
+
|
130 |
+
def add_text(image, text, pos):
|
131 |
+
xmin, ymin, xmax, ymax = pos
|
132 |
+
image = cv2.putText(
|
133 |
+
image,
|
134 |
+
text,
|
135 |
+
(xmin, ymin - 15),
|
136 |
+
cv2.FONT_HERSHEY_COMPLEX,
|
137 |
+
0.85,
|
138 |
+
(0, 0, 255),
|
139 |
+
2,
|
140 |
+
cv2.LINE_AA,
|
141 |
+
)
|
142 |
+
return image
|
143 |
+
|
144 |
+
|
145 |
+
def greedy_decode(preds):
|
146 |
+
# collapse best path (using itertools.groupby), map to chars, join char list to string
|
147 |
+
best_chars_collapsed = [k for k, _ in groupby(preds) if k != "BLANK"]
|
148 |
+
res = "".join(best_chars_collapsed)
|
149 |
+
return res
|
150 |
+
|
151 |
+
|
152 |
+
def read_image(file):
|
153 |
+
img = cv2.imread(file)
|
154 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
155 |
+
return img
|
156 |
+
|
157 |
+
|
158 |
+
def idx2char(preds):
|
159 |
+
return [VOCAB[idx] for idx in preds]
|
160 |
+
|
161 |
+
|
162 |
+
def post_process(preds):
|
163 |
+
# preds shape (seq_len, num_class)
|
164 |
+
_, preds = torch.max(preds, dim=1)
|
165 |
+
return idx2char(preds.tolist())
|
166 |
+
|
167 |
+
|
168 |
+
transform = transforms.Compose(
|
169 |
+
[
|
170 |
+
transforms.ToTensor(),
|
171 |
+
transforms.Grayscale(),
|
172 |
+
transforms.Resize((32, 128)),
|
173 |
+
transforms.Normalize(0.5, 0.5),
|
174 |
+
]
|
175 |
+
)
|
176 |
+
|
177 |
+
model = CRNN(32, 1, 37, 512)
|
178 |
+
|
179 |
+
state = torch.load("./out/ocr_point08.pt")
|
180 |
+
model.load_state_dict(state["model"])
|
181 |
+
|
182 |
+
|
183 |
+
def recognize(image):
|
184 |
+
model.eval()
|
185 |
+
preds = model(transform(image).unsqueeze(0))
|
186 |
+
text = post_process(preds[:, 0, :])
|
187 |
+
text = greedy_decode(text)
|
188 |
+
return text
|
189 |
+
|
190 |
+
|
191 |
+
if __name__ == "__main__":
|
192 |
+
parser = ArgumentParser()
|
193 |
+
parser.add_argument(
|
194 |
+
"--image",
|
195 |
+
default=None,
|
196 |
+
type=str,
|
197 |
+
help="path to image on which prediction will be made",
|
198 |
+
)
|
199 |
+
|
200 |
+
args = parser.parse_args()
|
201 |
+
|
202 |
+
assert os.path.exists(args.image), f"given path {args.image} does not exists"
|
203 |
+
|
204 |
+
im = read_image(args.image)
|
205 |
+
|
206 |
+
text = recognize(im)
|
207 |
+
|