Spaces:
Running
Running
fell back to deprecated api
Browse files- app.py +183 -492
- requirements.txt +1 -2
app.py
CHANGED
@@ -1,56 +1,29 @@
|
|
1 |
import json
|
2 |
import logging
|
|
|
3 |
import os
|
4 |
from collections import OrderedDict
|
5 |
from datetime import datetime
|
6 |
-
from
|
7 |
-
import
|
8 |
-
from typing import Dict, Optional, Tuple
|
9 |
|
10 |
import gradio as gr
|
11 |
import pandas as pd
|
12 |
import plotly.express as px
|
13 |
import requests
|
14 |
-
from requests.adapters import HTTPAdapter
|
15 |
-
from urllib3.util.retry import Retry
|
16 |
|
17 |
# Configure logging for the application
|
18 |
-
logging.basicConfig(
|
19 |
-
level=logging.INFO,
|
20 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
21 |
-
)
|
22 |
logger = logging.getLogger(__name__)
|
23 |
|
24 |
# --- Constants and Global Variables ---
|
25 |
|
26 |
CURRENT_YEAR = datetime.now().year
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
DATAFRAME_CACHE: Dict[int, Tuple[pd.DataFrame, float]] = OrderedDict()
|
33 |
-
CACHE_LOCK = Lock()
|
34 |
-
CACHE_TTL = 3600 # Cache TTL in seconds (1 hour)
|
35 |
-
|
36 |
-
# HTTP session with retry strategy
|
37 |
-
SESSION = requests.Session()
|
38 |
-
retry_strategy = Retry(
|
39 |
-
total=5,
|
40 |
-
backoff_factor=1,
|
41 |
-
status_forcelist=[429, 500, 502, 503, 504],
|
42 |
-
)
|
43 |
-
adapter = HTTPAdapter(max_retries=retry_strategy)
|
44 |
-
SESSION.mount("http://", adapter)
|
45 |
-
SESSION.mount("https://", adapter)
|
46 |
-
|
47 |
-
# NVD API Key from environment variables
|
48 |
-
NVD_API_KEY = os.environ.get("NVD_API_KEY")
|
49 |
-
if NVD_API_KEY:
|
50 |
-
logger.info("NVD API key found and will be used.")
|
51 |
-
SESSION.headers.update({"apiKey": NVD_API_KEY})
|
52 |
-
else:
|
53 |
-
logger.warning("NVD_API_KEY environment variable not set. Using public, rate-limited access.")
|
54 |
|
55 |
# Profiles for tailoring LLM-generated summaries to different audiences
|
56 |
AUDIENCE_PROFILES = {
|
@@ -86,191 +59,83 @@ AUDIENCE_PROFILES = {
|
|
86 |
}
|
87 |
}
|
88 |
|
89 |
-
# Valid year range for NVD feeds
|
90 |
-
MIN_YEAR = 2002
|
91 |
-
MAX_YEAR = CURRENT_YEAR
|
92 |
-
|
93 |
-
|
94 |
-
# --- Utility Functions ---
|
95 |
-
|
96 |
-
def validate_year(year: int) -> bool:
|
97 |
-
"""Validates if the year is within the acceptable range."""
|
98 |
-
return MIN_YEAR <= year <= MAX_YEAR
|
99 |
-
|
100 |
|
101 |
-
|
102 |
-
"""Removes expired entries from the cache."""
|
103 |
-
current_time = time.time()
|
104 |
-
with CACHE_LOCK:
|
105 |
-
expired_keys = [
|
106 |
-
key for key, (_, timestamp) in DATAFRAME_CACHE.items()
|
107 |
-
if current_time - timestamp > CACHE_TTL
|
108 |
-
]
|
109 |
-
for key in expired_keys:
|
110 |
-
if key in DATAFRAME_CACHE:
|
111 |
-
del DATAFRAME_CACHE[key]
|
112 |
-
logger.info(f"Removed expired cache entry for year {key}")
|
113 |
-
|
114 |
-
|
115 |
-
# --- Data Fetching and Parsing (FIXED for API v2.0) ---
|
116 |
|
117 |
def get_cve_dataframe(year: int) -> pd.DataFrame:
|
118 |
"""
|
119 |
-
|
120 |
-
|
121 |
"""
|
122 |
-
if
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
with CACHE_LOCK:
|
128 |
-
if year in DATAFRAME_CACHE:
|
129 |
-
logger.info(f"Cache hit for year {year}.")
|
130 |
-
DATAFRAME_CACHE.move_to_end(year)
|
131 |
-
return DATAFRAME_CACHE[year][0].copy()
|
132 |
-
|
133 |
-
logger.info(f"Cache miss. Fetching NVD data for year {year} from API v2.0.")
|
134 |
|
135 |
-
|
136 |
-
|
137 |
-
start_date = f"{year}-01-01T00:00:00.000"
|
138 |
-
end_date = f"{year}-12-31T23:59:59.999"
|
139 |
-
|
140 |
-
all_vulnerabilities = []
|
141 |
-
start_index = 0
|
142 |
|
143 |
try:
|
144 |
-
|
145 |
-
|
146 |
-
'pubStartDate': start_date,
|
147 |
-
'pubEndDate': end_date,
|
148 |
-
'resultsPerPage': RESULTS_PER_PAGE,
|
149 |
-
'startIndex': start_index
|
150 |
-
}
|
151 |
-
|
152 |
-
logger.info(f"Requesting CVEs from index {start_index}...")
|
153 |
-
response = SESSION.get(NVD_API_V2_URL, params=params, timeout=60)
|
154 |
-
|
155 |
-
if response.status_code == 404:
|
156 |
-
logger.error(f"404 Error: URL requested: {response.url}")
|
157 |
-
logger.error(f"Response content: {response.text[:500]}")
|
158 |
-
|
159 |
-
response.raise_for_status()
|
160 |
-
|
161 |
-
data = response.json()
|
162 |
-
vulnerabilities = data.get("vulnerabilities", [])
|
163 |
-
all_vulnerabilities.extend(vulnerabilities)
|
164 |
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
start_index += len(vulnerabilities)
|
169 |
-
|
170 |
-
if start_index >= total_results:
|
171 |
-
break
|
172 |
-
|
173 |
-
# Rate limiting: 6 seconds with API key, 10 seconds without
|
174 |
-
time.sleep(6 if NVD_API_KEY else 10)
|
175 |
|
176 |
-
|
177 |
-
logger.warning(f"No CVE data found for year {year}")
|
178 |
-
raise gr.Error(f"No CVE data available for year {year}.")
|
179 |
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
DATAFRAME_CACHE.popitem(last=False)
|
185 |
-
DATAFRAME_CACHE[year] = (df, time.time())
|
186 |
-
|
187 |
-
logger.info(f"Successfully cached {len(df)} CVEs for year {year}")
|
188 |
-
return df.copy()
|
189 |
|
190 |
-
except requests.exceptions.Timeout:
|
191 |
-
logger.error(f"Timeout while fetching data for {year}")
|
192 |
-
raise gr.Error("Request timed out. The NVD API might be busy. Please try again.")
|
193 |
except requests.exceptions.HTTPError as e:
|
194 |
logger.error(f"HTTP Error for {year}: {e}")
|
195 |
-
raise gr.Error(f"Failed to
|
196 |
-
except json.JSONDecodeError as e:
|
197 |
-
logger.error(f"Failed to parse JSON for {year}: {e}")
|
198 |
-
raise gr.Error(f"Data for {year} is corrupted or invalid.")
|
199 |
except Exception as e:
|
200 |
-
logger.error(f"
|
201 |
raise gr.Error(f"An unexpected error occurred: {str(e)}")
|
202 |
|
203 |
-
|
204 |
-
def parse_cve_items(vulnerabilities: list) -> pd.DataFrame:
|
205 |
"""
|
206 |
-
Extracts vulnerability details from the NVD
|
207 |
"""
|
208 |
rows = []
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
continue
|
214 |
|
215 |
-
cve_id = cve_data.get("id", "N/A")
|
216 |
-
|
217 |
-
# Get English description
|
218 |
-
description = "No description available"
|
219 |
-
for desc in cve_data.get("descriptions", []):
|
220 |
-
if desc.get("lang") == "en":
|
221 |
-
description = desc.get("value", description)
|
222 |
-
break
|
223 |
-
|
224 |
-
published = cve_data.get("published", "N/A")
|
225 |
-
|
226 |
-
# Parse CVSS metrics (prioritize v3.1, then v3.0, then v2)
|
227 |
-
base_score, severity, attack_vector = None, "N/A", "N/A"
|
228 |
-
metrics = cve_data.get("metrics", {})
|
229 |
-
|
230 |
-
if "cvssMetricV31" in metrics and metrics["cvssMetricV31"]:
|
231 |
-
metric_data = metrics["cvssMetricV31"][0].get("cvssData", {})
|
232 |
-
base_score = metric_data.get("baseScore")
|
233 |
-
severity = metric_data.get("baseSeverity", "N/A")
|
234 |
-
attack_vector = metric_data.get("attackVector", "N/A")
|
235 |
-
elif "cvssMetricV30" in metrics and metrics["cvssMetricV30"]:
|
236 |
-
metric_data = metrics["cvssMetricV30"][0].get("cvssData", {})
|
237 |
-
base_score = metric_data.get("baseScore")
|
238 |
-
severity = metric_data.get("baseSeverity", "N/A")
|
239 |
-
attack_vector = metric_data.get("attackVector", "N/A")
|
240 |
-
elif "cvssMetricV2" in metrics and metrics["cvssMetricV2"]:
|
241 |
-
metric_data = metrics["cvssMetricV2"][0]
|
242 |
-
cvss_data = metric_data.get("cvssData", {})
|
243 |
-
base_score = cvss_data.get("baseScore")
|
244 |
-
severity = metric_data.get("baseSeverity", "N/A")
|
245 |
-
attack_vector = cvss_data.get("accessVector", "N/A")
|
246 |
-
|
247 |
-
# Extract CWE IDs
|
248 |
-
cwe_ids = []
|
249 |
-
for weakness in cve_data.get("weaknesses", []):
|
250 |
-
for desc in weakness.get("description", []):
|
251 |
-
if desc.get("lang") == "en":
|
252 |
-
cwe_id = desc.get("value")
|
253 |
-
if cwe_id and cwe_id.startswith("CWE-"):
|
254 |
-
cwe_ids.append(cwe_id)
|
255 |
-
|
256 |
-
rows.append({
|
257 |
-
"CVE_ID": cve_id,
|
258 |
-
"Description": description,
|
259 |
-
"Published": published[:10] if published and published != "N/A" else "N/A",
|
260 |
-
"Base_Score": base_score,
|
261 |
-
"Severity": severity.upper() if severity and severity != "N/A" else "N/A",
|
262 |
-
"Attack_Vector": attack_vector.upper() if attack_vector and attack_vector != "N/A" else "N/A",
|
263 |
-
"CWE_IDs": ", ".join(cwe_ids) if cwe_ids else "N/A"
|
264 |
-
})
|
265 |
-
|
266 |
-
if not rows:
|
267 |
-
logger.warning("No valid CVE items could be parsed")
|
268 |
-
return pd.DataFrame()
|
269 |
-
|
270 |
df = pd.DataFrame(rows)
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
return df
|
275 |
|
276 |
|
@@ -281,341 +146,167 @@ def generate_tailored_summary(cve_description: str, audience: str, hf_token: str
|
|
281 |
Generates a tailored CVE summary using the Hugging Face Inference API.
|
282 |
"""
|
283 |
if not hf_token:
|
284 |
-
|
285 |
-
if not cve_description or
|
286 |
-
return "Please select a CVE
|
287 |
-
if audience not in AUDIENCE_PROFILES:
|
288 |
-
return "Invalid audience selected."
|
289 |
|
290 |
api_url = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
291 |
headers = {"Authorization": f"Bearer {hf_token}"}
|
292 |
-
profile = AUDIENCE_PROFILES
|
293 |
|
294 |
prompt = f"""<s>[INST] You are an expert cybersecurity analyst. Your task is to rewrite the following technical CVE description into a concise, actionable summary for a specific professional audience.
|
295 |
|
296 |
-
**Target Audience:** {audience}
|
297 |
-
- **Focus:** {profile.get('focus', 'N/A')}
|
298 |
-
- **Key Priorities:** {', '.join(profile.get('priorities', []))}
|
299 |
-
|
300 |
-
**Original CVE Description:**
|
301 |
-
---
|
302 |
-
{cve_description}
|
303 |
-
---
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
payload = {
|
308 |
-
"inputs": prompt,
|
309 |
-
"parameters": {
|
310 |
-
"max_new_tokens": 256,
|
311 |
-
"temperature": 0.7,
|
312 |
-
"top_p": 0.95,
|
313 |
-
"return_full_text": False
|
314 |
-
}
|
315 |
-
}
|
316 |
|
317 |
try:
|
318 |
-
response =
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
return "❌ Invalid API token. Please check your Hugging Face token."
|
324 |
-
elif response.status_code != 200:
|
325 |
-
error_data = response.json()
|
326 |
-
error_message = error_data.get("error", "Unknown error")
|
327 |
-
logger.error(f"Inference API Error ({response.status_code}): {error_message}")
|
328 |
-
return f"⚠️ API Error: {error_message}"
|
329 |
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
else:
|
336 |
-
return "⚠️ The model returned an empty response. Please try again."
|
337 |
-
else:
|
338 |
-
return "⚠️ Unexpected response format from the API."
|
339 |
-
except requests.exceptions.Timeout:
|
340 |
-
logger.error("Timeout while calling Inference API")
|
341 |
-
return "⏱️ Request timed out. The model might be overloaded. Please try again."
|
342 |
-
except Exception as e:
|
343 |
-
logger.error(f"Unexpected error in generate_tailored_summary: {e}")
|
344 |
-
return f"❌ An unexpected error occurred: {str(e)}"
|
345 |
|
346 |
|
347 |
# --- Analysis and Visualization ---
|
348 |
|
349 |
-
def analyze_and_visualize(
|
350 |
-
df: Optional[pd.DataFrame],
|
351 |
-
severity: str,
|
352 |
-
vector: str,
|
353 |
-
search: str
|
354 |
-
) -> Tuple[pd.DataFrame, Optional[px.bar], Optional[px.line], str]:
|
355 |
"""
|
356 |
-
Filters the main DataFrame and generates all outputs
|
|
|
357 |
"""
|
358 |
if df is None or df.empty:
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
filtered_df =
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
if masks:
|
376 |
-
combined_mask = pd.concat(masks, axis=1).any(axis=1)
|
377 |
-
filtered_df = filtered_df[combined_mask]
|
378 |
-
|
379 |
-
severity_chart = create_severity_chart(filtered_df)
|
380 |
-
timeline_chart = create_timeline_chart(filtered_df)
|
381 |
-
summary_text = create_summary_text(filtered_df)
|
382 |
-
|
383 |
-
display_columns = ["CVE_ID", "Severity", "Base_Score", "Description"]
|
384 |
-
display_df = filtered_df[[col for col in display_columns if col in filtered_df.columns]]
|
385 |
-
|
386 |
-
return display_df, severity_chart, timeline_chart, summary_text
|
387 |
-
except Exception as e:
|
388 |
-
logger.error(f"Error in analyze_and_visualize: {e}", exc_info=True)
|
389 |
-
empty_df = pd.DataFrame(columns=["CVE_ID", "Severity", "Base_Score", "Description"])
|
390 |
-
return empty_df, None, None, f"### Error\n\nAn error occurred while filtering data: {str(e)}"
|
391 |
-
|
392 |
-
|
393 |
-
def create_severity_chart(df: pd.DataFrame) -> Optional[px.bar]:
|
394 |
"""Creates a bar chart for CVE severity distribution."""
|
395 |
-
if df.empty
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
title="CVE Severity Distribution",
|
405 |
-
color=counts.index, color_discrete_map=color_map, text=counts.values
|
406 |
-
)
|
407 |
-
fig.update_traces(texttemplate='%{text}', textposition='outside')
|
408 |
-
fig.update_layout(showlegend=False, xaxis={'categoryorder': 'array', 'categoryarray': order})
|
409 |
-
return fig
|
410 |
-
except Exception as e:
|
411 |
-
logger.error(f"Error creating severity chart: {e}")
|
412 |
-
return None
|
413 |
|
414 |
-
def create_timeline_chart(df: pd.DataFrame)
|
415 |
"""Creates a line chart showing CVE publications over time."""
|
416 |
-
if df.empty or 'Published' not in df.columns:
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
df_copy.dropna(subset=["Date"], inplace=True)
|
422 |
-
if df_copy.empty: return None
|
423 |
-
|
424 |
-
counts = df_copy.set_index("Date").resample('M').size()
|
425 |
-
if counts.empty: return None
|
426 |
-
|
427 |
-
fig = px.line(
|
428 |
-
x=counts.index, y=counts.values,
|
429 |
-
labels={"x": "Month", "y": "Number of CVEs"},
|
430 |
-
title="CVE Publications Timeline", markers=True
|
431 |
-
)
|
432 |
-
return fig
|
433 |
-
except Exception as e:
|
434 |
-
logger.error(f"Error creating timeline chart: {e}")
|
435 |
-
return None
|
436 |
|
|
|
|
|
|
|
|
|
437 |
|
438 |
def create_summary_text(df: pd.DataFrame) -> str:
|
439 |
-
"""Generates a markdown string with key statistics."""
|
440 |
-
if df.empty:
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
return "\n".join([
|
450 |
-
f"### Summary Statistics",
|
451 |
-
f"- **Total CVEs Found:** {total_cves:,}",
|
452 |
-
f"- **Critical:** {sev_counts.get('CRITICAL', 0):,}",
|
453 |
-
f"- **High:** {sev_counts.get('HIGH', 0):,}",
|
454 |
-
f"- **Medium:** {sev_counts.get('MEDIUM', 0):,}",
|
455 |
-
f"- **Low:** {sev_counts.get('LOW', 0):,}",
|
456 |
-
f"- **Average Base Score:** {avg_score}",
|
457 |
-
f"- **Maximum Base Score:** {max_score}"
|
458 |
-
])
|
459 |
-
except Exception as e:
|
460 |
-
logger.error(f"Error creating summary text: {e}")
|
461 |
-
return f"### Error\n\nCould not generate summary: {str(e)}"
|
462 |
|
463 |
# --- Gradio UI and Event Logic ---
|
464 |
|
465 |
def create_dashboard():
|
466 |
-
"""Builds the entire Gradio interface."""
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
gr.Markdown(
|
475 |
-
"""
|
476 |
-
# 🛡️ CVE Dashboard: NVD API v2.0 Analyzer
|
477 |
-
Explore Common Vulnerabilities and Exposures (CVE) data from the National Vulnerability Database, fetched live using the NVD API 2.0.
|
478 |
-
|
479 |
-
**Note:** For faster loading times, set an `NVD_API_KEY` in your environment. You can request one from the [NVD website](https://nvd.nist.gov/developers/request-an-api-key).
|
480 |
-
"""
|
481 |
-
)
|
482 |
|
483 |
with gr.Row():
|
484 |
with gr.Column(scale=1):
|
485 |
-
gr.
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
)
|
490 |
-
|
491 |
-
gr.Markdown("### 🔍 Filters")
|
492 |
-
severity_dd = gr.Dropdown(
|
493 |
-
choices=["All", "CRITICAL", "HIGH", "MEDIUM", "LOW"], value="All",
|
494 |
-
label="2. Severity Level", info="Filter by CVSS severity rating"
|
495 |
-
)
|
496 |
-
vector_dd = gr.Dropdown(
|
497 |
-
choices=["All", "NETWORK", "ADJACENT_NETWORK", "LOCAL", "PHYSICAL"], value="All",
|
498 |
-
label="3. Attack Vector", info="Filter by attack vector type"
|
499 |
-
)
|
500 |
-
search_tb = gr.Textbox(
|
501 |
-
label="4. Search", placeholder="e.g., 'Log4j', 'SQL injection', 'CWE-89'...",
|
502 |
-
info="Search in CVE IDs, descriptions, and CWE IDs"
|
503 |
-
)
|
504 |
-
filter_btn = gr.Button("🔄 Apply Filters", variant="primary", size="lg")
|
505 |
-
|
506 |
with gr.Column(scale=3):
|
507 |
-
summary_out = gr.Markdown(
|
508 |
with gr.Tabs():
|
509 |
with gr.TabItem("📊 Data Table"):
|
510 |
-
table_out = gr.DataFrame(
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
|
515 |
-
label="CVE Data"
|
516 |
-
)
|
517 |
-
with gr.TabItem("📈 Severity Analysis"):
|
518 |
-
plot_severity_out = gr.Plot(label="Severity Distribution")
|
519 |
-
with gr.TabItem("📉 Timeline Analysis"):
|
520 |
-
plot_timeline_out = gr.Plot(label="Publication Timeline")
|
521 |
|
522 |
-
with gr.Accordion(
|
523 |
-
"🤖 AI-Powered CVE Analysis (Select a CVE from the table)",
|
524 |
-
open=False, visible=False
|
525 |
-
) as llm_accordion:
|
526 |
with gr.Row():
|
527 |
with gr.Column(scale=2):
|
528 |
-
original_desc_out = gr.Textbox(
|
529 |
-
label="Original CVE Description", lines=6, interactive=False, show_copy_button=True
|
530 |
-
)
|
531 |
with gr.Column(scale=1):
|
532 |
-
audience_dd = gr.Dropdown(
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
summary_llm_out = gr.Markdown(value="*Select an audience and click 'Generate'...*")
|
538 |
-
|
539 |
def on_year_change(year):
|
540 |
-
|
541 |
-
|
542 |
-
if year is None:
|
543 |
-
return None, pd.DataFrame(), None, None, "### Please select a year"
|
544 |
-
df = get_cve_dataframe(int(year))
|
545 |
-
return df, *analyze_and_visualize(df, "All", "All", "")
|
546 |
-
except Exception as e:
|
547 |
-
logger.error(f"Error in on_year_change: {e}")
|
548 |
-
return None, pd.DataFrame(), None, None, f"### Error\n\n{str(e)}"
|
549 |
-
|
550 |
-
def on_select_cve(full_df: pd.DataFrame, evt: gr.SelectData):
|
551 |
-
"""Handle CVE row selection safely."""
|
552 |
-
try:
|
553 |
-
if full_df is None or evt.value is None:
|
554 |
-
return "", "", gr.update(visible=False)
|
555 |
-
|
556 |
-
# Extract the CVE_ID from the first column of the selected row
|
557 |
-
if hasattr(evt, 'index') and isinstance(evt.index, list) and len(evt.index) >= 2:
|
558 |
-
row_idx = evt.index[0]
|
559 |
-
selected_cve_id = full_df.iloc[row_idx]["CVE_ID"]
|
560 |
-
else:
|
561 |
-
# Fallback: try to use the value directly
|
562 |
-
selected_cve_id = evt.value
|
563 |
-
|
564 |
-
cve_record = full_df[full_df["CVE_ID"] == selected_cve_id]
|
565 |
-
if cve_record.empty:
|
566 |
-
return "", "Could not find details for the selected CVE.", gr.update(visible=False)
|
567 |
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
return "", "Error loading CVE details", gr.update(visible=False)
|
573 |
|
574 |
-
analysis_outputs = [table_out, plot_severity_out, plot_timeline_out, summary_out]
|
575 |
filter_inputs = [df_state, severity_dd, vector_dd, search_tb]
|
576 |
-
|
577 |
-
year_dd.change(
|
578 |
-
fn=on_year_change, inputs=[year_dd],
|
579 |
-
outputs=[df_state, *analysis_outputs], show_progress="full"
|
580 |
-
)
|
581 |
-
dashboard.load(
|
582 |
-
fn=on_year_change, inputs=[year_dd],
|
583 |
-
outputs=[df_state, *analysis_outputs], show_progress="full"
|
584 |
-
)
|
585 |
-
|
586 |
-
filter_btn.click(
|
587 |
-
fn=analyze_and_visualize, inputs=filter_inputs, outputs=analysis_outputs
|
588 |
-
)
|
589 |
-
search_tb.submit(
|
590 |
-
fn=analyze_and_visualize, inputs=filter_inputs, outputs=analysis_outputs
|
591 |
-
)
|
592 |
-
for control in [severity_dd, vector_dd]:
|
593 |
-
control.change(
|
594 |
-
fn=analyze_and_visualize, inputs=filter_inputs, outputs=analysis_outputs
|
595 |
-
)
|
596 |
-
|
597 |
-
table_out.select(
|
598 |
-
fn=on_select_cve,
|
599 |
-
inputs=[df_state],
|
600 |
-
outputs=[selected_cve_description, original_desc_out, llm_accordion],
|
601 |
-
show_progress="hidden"
|
602 |
-
)
|
603 |
-
|
604 |
-
generate_btn.click(
|
605 |
-
fn=generate_tailored_summary,
|
606 |
-
inputs=[selected_cve_description, audience_dd, hf_token_state],
|
607 |
-
outputs=[summary_llm_out]
|
608 |
-
)
|
609 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
610 |
return dashboard
|
611 |
|
612 |
if __name__ == "__main__":
|
613 |
-
|
614 |
-
|
615 |
-
logger.warning("HF_TOKEN not found. AI features will be limited.")
|
616 |
-
|
617 |
-
cve_dashboard = create_dashboard()
|
618 |
-
cve_dashboard.launch(server_name="0.0.0.0", show_error=True)
|
619 |
-
except Exception as e:
|
620 |
-
logger.error(f"Failed to launch application: {e}", exc_info=True)
|
621 |
-
raise
|
|
|
1 |
import json
|
2 |
import logging
|
3 |
+
import gzip
|
4 |
import os
|
5 |
from collections import OrderedDict
|
6 |
from datetime import datetime
|
7 |
+
from io import BytesIO
|
8 |
+
from typing import Dict
|
|
|
9 |
|
10 |
import gradio as gr
|
11 |
import pandas as pd
|
12 |
import plotly.express as px
|
13 |
import requests
|
|
|
|
|
14 |
|
15 |
# Configure logging for the application
|
16 |
+
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
|
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
19 |
# --- Constants and Global Variables ---
|
20 |
|
21 |
CURRENT_YEAR = datetime.now().year
|
22 |
+
NVD_BASE_URL = "https://nvd.nist.gov/feeds/json/cve/1.1/nvdcve-1.1-{year}.json.gz"
|
23 |
+
|
24 |
+
# In-memory LRU cache (by insertion order) to store DataFrames for recent years.
|
25 |
+
CACHE_MAX_SIZE = 3
|
26 |
+
DATAFRAME_CACHE: Dict[int, pd.DataFrame] = OrderedDict()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# Profiles for tailoring LLM-generated summaries to different audiences
|
29 |
AUDIENCE_PROFILES = {
|
|
|
59 |
}
|
60 |
}
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
# --- Data Fetching and Parsing ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
|
65 |
def get_cve_dataframe(year: int) -> pd.DataFrame:
|
66 |
"""
|
67 |
+
Downloads, parses, and caches the NVD feed for a specific year.
|
68 |
+
It returns a pandas DataFrame. Caching is used to avoid repeated downloads.
|
69 |
"""
|
70 |
+
if year in DATAFRAME_CACHE:
|
71 |
+
logger.info(f"Cache hit for year {year}.")
|
72 |
+
DATAFRAME_CACHE.move_to_end(year) # Mark as recently used
|
73 |
+
return DATAFRAME_CACHE[year]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
+
logger.info(f"Cache miss. Downloading NVD data for year {year}.")
|
76 |
+
url = NVD_BASE_URL.format(year=year)
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
try:
|
79 |
+
response = requests.get(url, timeout=30)
|
80 |
+
response.raise_for_status()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
+
with gzip.GzipFile(fileobj=BytesIO(response.content)) as f:
|
83 |
+
nvd_data = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
+
df = parse_cve_items(nvd_data)
|
|
|
|
|
86 |
|
87 |
+
if len(DATAFRAME_CACHE) >= CACHE_MAX_SIZE:
|
88 |
+
DATAFRAME_CACHE.popitem(last=False)
|
89 |
+
DATAFRAME_CACHE[year] = df
|
90 |
+
return df
|
|
|
|
|
|
|
|
|
|
|
91 |
|
|
|
|
|
|
|
92 |
except requests.exceptions.HTTPError as e:
|
93 |
logger.error(f"HTTP Error for {year}: {e}")
|
94 |
+
raise gr.Error(f"Failed to download data for {year}. The feed may be unavailable.")
|
|
|
|
|
|
|
95 |
except Exception as e:
|
96 |
+
logger.error(f"Error processing feed for {year}: {e}")
|
97 |
raise gr.Error(f"An unexpected error occurred: {str(e)}")
|
98 |
|
99 |
+
def parse_cve_items(nvd_data: dict) -> pd.DataFrame:
|
|
|
100 |
"""
|
101 |
+
Extracts vulnerability details from the raw NVD JSON data into a structured DataFrame.
|
102 |
"""
|
103 |
rows = []
|
104 |
+
for item in nvd_data.get("CVE_Items", []):
|
105 |
+
try:
|
106 |
+
cve_id = item.get("cve", {}).get("CVE_data_meta", {}).get("ID", "N/A")
|
107 |
+
desc_data = item.get("cve", {}).get("description", {}).get("description_data", [])
|
108 |
+
description = desc_data[0].get("value", "No description") if desc_data else "No description"
|
109 |
+
published = item.get("publishedDate", "")
|
110 |
+
base_score, severity, attack_vector = None, "N/A", "N/A"
|
111 |
+
|
112 |
+
if "baseMetricV3" in item.get("impact", {}):
|
113 |
+
impact_v3 = item["impact"]["baseMetricV3"]["cvssV3"]
|
114 |
+
base_score = impact_v3.get("baseScore")
|
115 |
+
severity = impact_v3.get("baseSeverity")
|
116 |
+
attack_vector = impact_v3.get("attackVector")
|
117 |
+
elif "baseMetricV2" in item.get("impact", {}):
|
118 |
+
impact_v2 = item["impact"]["baseMetricV2"]
|
119 |
+
base_score = impact_v2["cvssV2"].get("baseScore")
|
120 |
+
severity = impact_v2.get("severity")
|
121 |
+
attack_vector = impact_v2.get("accessVector")
|
122 |
+
|
123 |
+
problem_types = item.get("cve", {}).get("problemtype", {}).get("problemtype_data", [])
|
124 |
+
cwe_ids = [desc["value"] for pt in problem_types for desc in pt.get("description", []) if desc.get("value", "").startswith("CWE-")]
|
125 |
+
|
126 |
+
rows.append({
|
127 |
+
"CVE_ID": cve_id, "Description": description, "Published": published[:10],
|
128 |
+
"Base_Score": base_score, "Severity": severity, "Attack_Vector": attack_vector,
|
129 |
+
"CWE_IDs": ", ".join(cwe_ids) if cwe_ids else "N/A"
|
130 |
+
})
|
131 |
+
except Exception as e:
|
132 |
+
cve_id_str = cve_id if 'cve_id' in locals() else "Unknown"
|
133 |
+
logger.warning(f"Skipping malformed CVE item ({cve_id_str}): {e}")
|
134 |
continue
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
df = pd.DataFrame(rows)
|
137 |
+
if "Base_Score" in df.columns:
|
138 |
+
df["Base_Score"] = pd.to_numeric(df["Base_Score"], errors='coerce')
|
|
|
139 |
return df
|
140 |
|
141 |
|
|
|
146 |
Generates a tailored CVE summary using the Hugging Face Inference API.
|
147 |
"""
|
148 |
if not hf_token:
|
149 |
+
raise gr.Error("Hugging Face API token is not configured as a Space Secret.")
|
150 |
+
if not cve_description or not audience:
|
151 |
+
return "Please select a CVE and an audience first."
|
|
|
|
|
152 |
|
153 |
api_url = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
154 |
headers = {"Authorization": f"Bearer {hf_token}"}
|
155 |
+
profile = AUDIENCE_PROFILES.get(audience, {})
|
156 |
|
157 |
prompt = f"""<s>[INST] You are an expert cybersecurity analyst. Your task is to rewrite the following technical CVE description into a concise, actionable summary for a specific professional audience.
|
158 |
|
159 |
+
**Target Audience:** {audience}
|
160 |
+
- **Focus:** {profile.get('focus', 'N/A')}
|
161 |
+
- **Key Priorities:** {', '.join(profile.get('priorities', []))}
|
162 |
+
|
163 |
+
**Original CVE Description:**
|
164 |
+
---
|
165 |
+
{cve_description}
|
166 |
+
---
|
167 |
+
|
168 |
+
Rewrite the description in a {profile.get('tone', 'professional')} tone, focusing on what matters most to this audience. Do not start with "As a [role]...". Directly provide the summary. [/INST]"""
|
169 |
+
|
170 |
+
payload = {"inputs": prompt, "parameters": {"max_new_tokens": 256, "return_full_text": False}}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
try:
|
173 |
+
response = requests.post(api_url, headers=headers, json=payload, timeout=45)
|
174 |
+
if response.status_code != 200:
|
175 |
+
error_message = response.json().get("error", "Unknown error")
|
176 |
+
logger.error(f"Inference API Error: {error_message}")
|
177 |
+
return f"Error from API: {error_message}. The model might be loading, please try again."
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
|
179 |
+
return response.json()[0]['generated_text'].strip()
|
180 |
+
|
181 |
+
except requests.exceptions.RequestException as e:
|
182 |
+
logger.error(f"Request to Inference API failed: {e}")
|
183 |
+
return f"Error: Could not connect to the Hugging Face API. {e}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
|
186 |
# --- Analysis and Visualization ---
|
187 |
|
188 |
+
def analyze_and_visualize(df: pd.DataFrame, severity: str, vector: str, search: str):
|
|
|
|
|
|
|
|
|
|
|
189 |
"""
|
190 |
+
Filters the main DataFrame and generates all outputs: a filtered table,
|
191 |
+
visualizations, and a summary markdown string.
|
192 |
"""
|
193 |
if df is None or df.empty:
|
194 |
+
return pd.DataFrame(), None, None, "### No Data Loaded"
|
195 |
+
|
196 |
+
filtered_df = df.copy()
|
197 |
+
if severity != "All":
|
198 |
+
filtered_df = filtered_df[filtered_df["Severity"] == severity]
|
199 |
+
if vector != "All":
|
200 |
+
filtered_df = filtered_df[filtered_df["Attack_Vector"] == vector]
|
201 |
+
if search:
|
202 |
+
mask = (filtered_df["CVE_ID"].str.contains(search, case=False, na=False) |
|
203 |
+
filtered_df["Description"].str.contains(search, case=False, na=False) |
|
204 |
+
filtered_df["CWE_IDs"].str.contains(search, case=False, na=False))
|
205 |
+
filtered_df = filtered_df[mask]
|
206 |
+
|
207 |
+
return filtered_df, create_severity_chart(filtered_df), create_timeline_chart(filtered_df), create_summary_text(filtered_df)
|
208 |
+
|
209 |
+
def create_severity_chart(df: pd.DataFrame):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
"""Creates a bar chart for CVE severity distribution."""
|
211 |
+
if df.empty: return None
|
212 |
+
order = ["CRITICAL", "HIGH", "MEDIUM", "LOW", "N/A"]
|
213 |
+
counts = df["Severity"].value_counts().reindex(order, fill_value=0)
|
214 |
+
color_map = {"CRITICAL": "#8B0000", "HIGH": "#FF4500", "MEDIUM": "#FFA500", "LOW": "#FFD700", "N/A": "#D3D3D3"}
|
215 |
+
|
216 |
+
fig = px.bar(counts, x=counts.index, y=counts.values, labels={"x": "Severity", "y": "Count"},
|
217 |
+
title="CVE Severity Distribution", color=counts.index, color_discrete_map=color_map, text_auto=True)
|
218 |
+
fig.update_layout(showlegend=False, xaxis={'categoryorder':'array', 'categoryarray':order})
|
219 |
+
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
+
def create_timeline_chart(df: pd.DataFrame):
|
222 |
"""Creates a line chart showing CVE publications over time."""
|
223 |
+
if df.empty or 'Published' not in df.columns: return None
|
224 |
+
df_copy = df.copy()
|
225 |
+
df_copy["Date"] = pd.to_datetime(df_copy["Published"], errors='coerce')
|
226 |
+
df_copy.dropna(subset=["Date"], inplace=True)
|
227 |
+
if df_copy.empty: return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
228 |
|
229 |
+
counts = df_copy.set_index("Date").resample('M').size()
|
230 |
+
fig = px.line(x=counts.index, y=counts.values, labels={"x": "Month", "y": "Number of CVEs"},
|
231 |
+
title="CVE Publications Timeline", markers=True)
|
232 |
+
return fig
|
233 |
|
234 |
def create_summary_text(df: pd.DataFrame) -> str:
|
235 |
+
"""Generates a markdown string with key statistics from the DataFrame."""
|
236 |
+
if df.empty: return "### No results match your filter criteria."
|
237 |
+
scores = df['Base_Score'].dropna()
|
238 |
+
avg_score = f"{scores.mean():.2f}" if not scores.empty else 'N/A'
|
239 |
+
return f"""### Summary Statistics
|
240 |
+
- **Total CVEs Found:** {len(df):,}
|
241 |
+
- **Critical:** {len(df[df['Severity'] == 'CRITICAL']):,}
|
242 |
+
- **High:** {len(df[df['Severity'] == 'HIGH']):,}
|
243 |
+
- **Average Base Score:** {avg_score}"""
|
244 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
|
246 |
# --- Gradio UI and Event Logic ---
|
247 |
|
248 |
def create_dashboard():
|
249 |
+
"""Builds the entire Gradio interface and defines event handling."""
|
250 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="CVE Dashboard") as dashboard:
|
251 |
+
df_state = gr.State()
|
252 |
+
selected_cve_description = gr.State("")
|
253 |
+
hf_token_state = gr.State(os.environ.get("HF_TOKEN"))
|
254 |
+
|
255 |
+
gr.Markdown("# CVE Dashboard: NVD Feed Analyzer")
|
256 |
+
gr.Markdown("Explore CVE data from the National Vulnerability Database. **Note:** This demo uses deprecated NVD JSON feeds; a production app should use the NVD API 2.0.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
|
258 |
with gr.Row():
|
259 |
with gr.Column(scale=1):
|
260 |
+
year_dd = gr.Dropdown(choices=list(range(2002, CURRENT_YEAR + 1))[::-1], value=CURRENT_YEAR, label="1. Select Year")
|
261 |
+
severity_dd = gr.Dropdown(choices=["All", "CRITICAL", "HIGH", "MEDIUM", "LOW"], value="All", label="2. Filter by Severity")
|
262 |
+
vector_dd = gr.Dropdown(choices=["All", "NETWORK", "ADJACENT_NETWORK", "LOCAL", "PHYSICAL"], value="All", label="3. Filter by Attack Vector")
|
263 |
+
search_tb = gr.Textbox(label="4. Search Keyword", placeholder="e.g., 'Log4j', 'CWE-79', ...")
|
264 |
+
filter_btn = gr.Button("Apply Filters", variant="primary")
|
265 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
with gr.Column(scale=3):
|
267 |
+
summary_out = gr.Markdown()
|
268 |
with gr.Tabs():
|
269 |
with gr.TabItem("📊 Data Table"):
|
270 |
+
table_out = gr.DataFrame(headers=["CVE_ID", "Severity", "Base_Score", "Description"], wrap=True, max_rows=15, interactive=True)
|
271 |
+
with gr.TabItem("📈 Severity Chart"):
|
272 |
+
plot_severity_out = gr.Plot()
|
273 |
+
with gr.TabItem("📉 Timeline Chart"):
|
274 |
+
plot_timeline_out = gr.Plot()
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
|
276 |
+
with gr.Accordion("Tailored CVE Analysis (Select a row in the table above)", open=False) as llm_accordion:
|
|
|
|
|
|
|
277 |
with gr.Row():
|
278 |
with gr.Column(scale=2):
|
279 |
+
original_desc_out = gr.Textbox(label="Full Original CVE Description", lines=8, interactive=False)
|
|
|
|
|
280 |
with gr.Column(scale=1):
|
281 |
+
audience_dd = gr.Dropdown(choices=list(AUDIENCE_PROFILES.keys()), label="Select Audience", value="Cybersecurity Professional")
|
282 |
+
generate_btn = gr.Button("Generate Tailored Summary", variant="primary")
|
283 |
+
summary_llm_out = gr.Markdown("*Your tailored summary will appear here...*")
|
284 |
+
|
285 |
+
# --- Event Handling Logic ---
|
|
|
|
|
286 |
def on_year_change(year):
|
287 |
+
df = get_cve_dataframe(year)
|
288 |
+
return df, *analyze_and_visualize(df, "All", "All", "")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
+
def on_select_cve(df: pd.DataFrame, evt: gr.SelectData):
|
291 |
+
if evt.value is None: return "", "", gr.update(visible=False)
|
292 |
+
full_description = df.iloc[evt.index[0]]["Description"]
|
293 |
+
return full_description, full_description, gr.update(visible=True)
|
|
|
294 |
|
|
|
295 |
filter_inputs = [df_state, severity_dd, vector_dd, search_tb]
|
296 |
+
analysis_outputs = [table_out, plot_severity_out, plot_timeline_out, summary_out]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
|
298 |
+
year_dd.change(fn=on_year_change, inputs=[year_dd], outputs=[df_state] + analysis_outputs)
|
299 |
+
dashboard.load(fn=on_year_change, inputs=[year_dd], outputs=[df_state] + analysis_outputs)
|
300 |
+
|
301 |
+
for control in [severity_dd, vector_dd, filter_btn, search_tb]:
|
302 |
+
event = control.click if isinstance(control, gr.Button) else (control.submit if isinstance(control, gr.Textbox) else control.change)
|
303 |
+
event(fn=analyze_and_visualize, inputs=filter_inputs, outputs=analysis_outputs)
|
304 |
+
|
305 |
+
table_out.select(fn=on_select_cve, inputs=[df_state], outputs=[selected_cve_description, original_desc_out, llm_accordion], show_progress="hidden")
|
306 |
+
generate_btn.click(fn=generate_tailored_summary, inputs=[selected_cve_description, audience_dd, hf_token_state], outputs=[summary_llm_out])
|
307 |
+
|
308 |
return dashboard
|
309 |
|
310 |
if __name__ == "__main__":
|
311 |
+
cve_dashboard = create_dashboard()
|
312 |
+
cve_dashboard.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
gradio
|
2 |
pandas
|
3 |
plotly
|
4 |
-
requests
|
5 |
-
urllib3
|
|
|
1 |
gradio
|
2 |
pandas
|
3 |
plotly
|
4 |
+
requests
|
|