Spaces:
Running
Running
Initial commit of CVE decoder application
Browse files- .github/workflows/sync-to-hf.yml +26 -0
- app.py +615 -0
- requirements.txt +5 -0
.github/workflows/sync-to-hf.yml
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
name: Sync to Hugging Face hub
|
2 |
+
on:
|
3 |
+
push:
|
4 |
+
branches: [main]
|
5 |
+
workflow_dispatch:
|
6 |
+
|
7 |
+
jobs:
|
8 |
+
sync-to-hub:
|
9 |
+
runs-on: ubuntu-latest
|
10 |
+
steps:
|
11 |
+
- uses: actions/checkout@v3
|
12 |
+
with:
|
13 |
+
fetch-depth: 0
|
14 |
+
lfs: true
|
15 |
+
|
16 |
+
- name: Push to hub
|
17 |
+
env:
|
18 |
+
HF_TOKEN: ${{ secrets.HF_TOKEN }}
|
19 |
+
HF_USERNAME: MMADS
|
20 |
+
SPACE_NAME: cve-decoder
|
21 |
+
run: |
|
22 |
+
# Add HuggingFace Space as remote
|
23 |
+
git remote add space https://${HF_USERNAME}:${HF_TOKEN}@huggingface.co/spaces/${HF_USERNAME}/${SPACE_NAME}
|
24 |
+
|
25 |
+
# Force push to space
|
26 |
+
git push --force space main
|
app.py
ADDED
@@ -0,0 +1,615 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import logging
|
3 |
+
import os
|
4 |
+
from collections import OrderedDict
|
5 |
+
from datetime import datetime, timedelta
|
6 |
+
from typing import Dict, Optional, Tuple
|
7 |
+
from threading import Lock
|
8 |
+
import time
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
+
import pandas as pd
|
12 |
+
import plotly.express as px
|
13 |
+
import requests
|
14 |
+
from requests.adapters import HTTPAdapter
|
15 |
+
from urllib3.util.retry import Retry
|
16 |
+
|
17 |
+
# Configure logging for the application
|
18 |
+
logging.basicConfig(
|
19 |
+
level=logging.INFO,
|
20 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
21 |
+
)
|
22 |
+
logger = logging.getLogger(__name__)
|
23 |
+
|
24 |
+
# --- Constants and Global Variables ---
|
25 |
+
|
26 |
+
CURRENT_YEAR = datetime.now().year
|
27 |
+
# --- REFACTORED: Use NVD API v2.0 endpoint ---
|
28 |
+
NVD_API_V2_URL = "https://services.nvd.nist.gov/rest/json/cves/2.0"
|
29 |
+
RESULTS_PER_PAGE = 2000 # Max allowed by the API
|
30 |
+
|
31 |
+
# Thread-safe cache with lock
|
32 |
+
CACHE_MAX_SIZE = 5
|
33 |
+
DATAFRAME_CACHE: Dict[int, Tuple[pd.DataFrame, float]] = OrderedDict()
|
34 |
+
CACHE_LOCK = Lock()
|
35 |
+
CACHE_TTL = 3600 # Cache TTL in seconds (1 hour)
|
36 |
+
|
37 |
+
# HTTP session with retry strategy
|
38 |
+
SESSION = requests.Session()
|
39 |
+
retry_strategy = Retry(
|
40 |
+
total=5, # Increased retries for API robustness
|
41 |
+
backoff_factor=1,
|
42 |
+
status_forcelist=[429, 500, 502, 503, 504],
|
43 |
+
)
|
44 |
+
adapter = HTTPAdapter(max_retries=retry_strategy)
|
45 |
+
SESSION.mount("http://", adapter)
|
46 |
+
SESSION.mount("https://", adapter)
|
47 |
+
|
48 |
+
# NVD API Key from environment variables
|
49 |
+
NVD_API_KEY = os.environ.get("NVD_API_KEY")
|
50 |
+
if NVD_API_KEY:
|
51 |
+
logger.info("NVD API key found and will be used.")
|
52 |
+
SESSION.headers.update({"apiKey": NVD_API_KEY})
|
53 |
+
else:
|
54 |
+
logger.warning("NVD_API_KEY environment variable not set. Using public, rate-limited access.")
|
55 |
+
|
56 |
+
# Profiles for tailoring LLM-generated summaries to different audiences
|
57 |
+
AUDIENCE_PROFILES = {
|
58 |
+
"Cybersecurity Professional": {
|
59 |
+
"focus": "threat assessment, attack vectors, mitigation strategies, and security controls",
|
60 |
+
"tone": "technical and precise",
|
61 |
+
"priorities": ["exploitation methods", "defensive measures", "risk assessment", "compliance implications"]
|
62 |
+
},
|
63 |
+
"Data Scientist": {
|
64 |
+
"focus": "data exposure risks, model vulnerabilities, and statistical analysis implications",
|
65 |
+
"tone": "analytical and research-oriented",
|
66 |
+
"priorities": ["data integrity", "model security", "pipeline vulnerabilities", "privacy concerns"]
|
67 |
+
},
|
68 |
+
"Data Engineer": {
|
69 |
+
"focus": "infrastructure vulnerabilities, data pipeline security, and system architecture impacts",
|
70 |
+
"tone": "technical with infrastructure emphasis",
|
71 |
+
"priorities": ["database security", "ETL vulnerabilities", "infrastructure risks", "data flow security"]
|
72 |
+
},
|
73 |
+
"Full-Stack Developer": {
|
74 |
+
"focus": "code vulnerabilities, dependency risks, and implementation fixes",
|
75 |
+
"tone": "practical and code-oriented",
|
76 |
+
"priorities": ["code examples", "library updates", "patch implementation", "secure coding practices"]
|
77 |
+
},
|
78 |
+
"Product Owner": {
|
79 |
+
"focus": "business impact, user experience, and prioritization for backlog",
|
80 |
+
"tone": "business-oriented with technical context",
|
81 |
+
"priorities": ["user impact", "feature implications", "timeline considerations", "resource requirements"]
|
82 |
+
},
|
83 |
+
"Manager": {
|
84 |
+
"focus": "business risk, resource allocation, and strategic implications",
|
85 |
+
"tone": "executive summary style",
|
86 |
+
"priorities": ["business impact", "cost implications", "team requirements", "timeline urgency"]
|
87 |
+
}
|
88 |
+
}
|
89 |
+
|
90 |
+
# Valid year range for NVD feeds
|
91 |
+
MIN_YEAR = 2002
|
92 |
+
MAX_YEAR = CURRENT_YEAR
|
93 |
+
|
94 |
+
|
95 |
+
# --- Utility Functions ---
|
96 |
+
|
97 |
+
def validate_year(year: int) -> bool:
|
98 |
+
"""Validates if the year is within the acceptable range."""
|
99 |
+
return MIN_YEAR <= year <= MAX_YEAR
|
100 |
+
|
101 |
+
|
102 |
+
def clean_cache() -> None:
|
103 |
+
"""Removes expired entries from the cache."""
|
104 |
+
current_time = time.time()
|
105 |
+
with CACHE_LOCK:
|
106 |
+
expired_keys = [
|
107 |
+
key for key, (_, timestamp) in DATAFRAME_CACHE.items()
|
108 |
+
if current_time - timestamp > CACHE_TTL
|
109 |
+
]
|
110 |
+
for key in expired_keys:
|
111 |
+
if key in DATAFRAME_CACHE:
|
112 |
+
del DATAFRAME_CACHE[key]
|
113 |
+
logger.info(f"Removed expired cache entry for year {key}")
|
114 |
+
|
115 |
+
|
116 |
+
# --- Data Fetching and Parsing (REFACTORED for API v2.0) ---
|
117 |
+
|
118 |
+
def get_cve_dataframe(year: int) -> pd.DataFrame:
|
119 |
+
"""
|
120 |
+
Fetches, parses, and caches CVE data for a specific year from the NVD API 2.0.
|
121 |
+
Returns a pandas DataFrame with thread-safe caching.
|
122 |
+
"""
|
123 |
+
if not validate_year(year):
|
124 |
+
raise gr.Error(f"Invalid year: {year}. Please select a year between {MIN_YEAR} and {MAX_YEAR}.")
|
125 |
+
|
126 |
+
# Clean cache before checking
|
127 |
+
clean_cache()
|
128 |
+
|
129 |
+
with CACHE_LOCK:
|
130 |
+
if year in DATAFRAME_CACHE:
|
131 |
+
logger.info(f"Cache hit for year {year}.")
|
132 |
+
DATAFRAME_CACHE.move_to_end(year) # Mark as recently used
|
133 |
+
return DATAFRAME_CACHE[year][0].copy() # Return a copy to prevent mutations
|
134 |
+
|
135 |
+
logger.info(f"Cache miss. Fetching NVD data for year {year} from API v2.0.")
|
136 |
+
|
137 |
+
# Define date range for the selected year
|
138 |
+
start_date = datetime(year, 1, 1, 0, 0, 0).isoformat()
|
139 |
+
end_date = datetime(year + 1, 1, 1, 0, 0, 0).isoformat()
|
140 |
+
|
141 |
+
all_vulnerabilities = []
|
142 |
+
start_index = 0
|
143 |
+
|
144 |
+
try:
|
145 |
+
while True:
|
146 |
+
params = {
|
147 |
+
'pubStartDate': start_date,
|
148 |
+
'pubEndDate': end_date,
|
149 |
+
'resultsPerPage': RESULTS_PER_PAGE,
|
150 |
+
'startIndex': start_index
|
151 |
+
}
|
152 |
+
|
153 |
+
logger.info(f"Requesting CVEs from index {start_index}...")
|
154 |
+
response = SESSION.get(NVD_API_V2_URL, params=params, timeout=60)
|
155 |
+
response.raise_for_status()
|
156 |
+
|
157 |
+
data = response.json()
|
158 |
+
vulnerabilities = data.get("vulnerabilities", [])
|
159 |
+
all_vulnerabilities.extend(vulnerabilities)
|
160 |
+
|
161 |
+
total_results = data.get("totalResults", 0)
|
162 |
+
start_index += len(vulnerabilities)
|
163 |
+
|
164 |
+
if start_index >= total_results:
|
165 |
+
break
|
166 |
+
|
167 |
+
# --- Respect NVD rate limits ---
|
168 |
+
# Sleep for 6 seconds with API key, 10 without, to be safe
|
169 |
+
time.sleep(6 if NVD_API_KEY else 10)
|
170 |
+
|
171 |
+
if not all_vulnerabilities:
|
172 |
+
logger.warning(f"No CVE data found for year {year}")
|
173 |
+
raise gr.Error(f"No CVE data available for year {year}.")
|
174 |
+
|
175 |
+
df = parse_cve_items(all_vulnerabilities)
|
176 |
+
|
177 |
+
with CACHE_LOCK:
|
178 |
+
if len(DATAFRAME_CACHE) >= CACHE_MAX_SIZE:
|
179 |
+
DATAFRAME_CACHE.popitem(last=False)
|
180 |
+
DATAFRAME_CACHE[year] = (df, time.time())
|
181 |
+
|
182 |
+
return df.copy()
|
183 |
+
|
184 |
+
except requests.exceptions.Timeout:
|
185 |
+
logger.error(f"Timeout while fetching data for {year}")
|
186 |
+
raise gr.Error("Request timed out. The NVD API might be busy. Please try again.")
|
187 |
+
except requests.exceptions.HTTPError as e:
|
188 |
+
logger.error(f"HTTP Error for {year}: {e}")
|
189 |
+
raise gr.Error(f"Failed to fetch data for {year}. HTTP Error: {e.response.status_code}")
|
190 |
+
except json.JSONDecodeError as e:
|
191 |
+
logger.error(f"Failed to parse JSON for {year}: {e}")
|
192 |
+
raise gr.Error(f"Data for {year} is corrupted or invalid.")
|
193 |
+
except Exception as e:
|
194 |
+
logger.error(f"Unexpected error processing feed for {year}: {e}", exc_info=True)
|
195 |
+
raise gr.Error(f"An unexpected error occurred: {str(e)}")
|
196 |
+
|
197 |
+
|
198 |
+
def parse_cve_items(vulnerabilities: list) -> pd.DataFrame:
|
199 |
+
"""
|
200 |
+
Extracts vulnerability details from the NVD API v2.0 JSON data.
|
201 |
+
"""
|
202 |
+
rows = []
|
203 |
+
|
204 |
+
for item in vulnerabilities:
|
205 |
+
cve_data = item.get("cve", {})
|
206 |
+
if not cve_data:
|
207 |
+
continue
|
208 |
+
|
209 |
+
cve_id = cve_data.get("id", "N/A")
|
210 |
+
|
211 |
+
# Get English description
|
212 |
+
description = "No description available"
|
213 |
+
for desc in cve_data.get("descriptions", []):
|
214 |
+
if desc.get("lang") == "en":
|
215 |
+
description = desc.get("value", description)
|
216 |
+
break
|
217 |
+
|
218 |
+
published = cve_data.get("published", "N/A")
|
219 |
+
|
220 |
+
# --- REFACTORED: Extract CVSS metrics, prioritizing v3.1 -> v3.0 -> v2 ---
|
221 |
+
base_score, severity, attack_vector = None, "N/A", "N/A"
|
222 |
+
metrics = cve_data.get("metrics", {})
|
223 |
+
|
224 |
+
if "cvssMetricV31" in metrics:
|
225 |
+
metric_data = metrics["cvssMetricV31"][0].get("cvssData", {})
|
226 |
+
base_score = metric_data.get("baseScore")
|
227 |
+
severity = metric_data.get("baseSeverity", "N/A")
|
228 |
+
attack_vector = metric_data.get("attackVector", "N/A")
|
229 |
+
elif "cvssMetricV30" in metrics:
|
230 |
+
metric_data = metrics["cvssMetricV30"][0].get("cvssData", {})
|
231 |
+
base_score = metric_data.get("baseScore")
|
232 |
+
severity = metric_data.get("baseSeverity", "N/A")
|
233 |
+
attack_vector = metric_data.get("attackVector", "N/A")
|
234 |
+
elif "cvssMetricV2" in metrics:
|
235 |
+
metric_data = metrics["cvssMetricV2"][0]
|
236 |
+
base_score = metric_data.get("cvssData", {}).get("baseScore")
|
237 |
+
severity = metric_data.get("baseSeverity", "N/A")
|
238 |
+
attack_vector = metric_data.get("accessVector", "N/A") # Note the different key for V2
|
239 |
+
|
240 |
+
# Extract CWE IDs
|
241 |
+
cwe_ids = []
|
242 |
+
for weakness in cve_data.get("weaknesses", []):
|
243 |
+
for desc in weakness.get("description", []):
|
244 |
+
if desc.get("lang") == "en":
|
245 |
+
cwe_id = desc.get("value")
|
246 |
+
if cwe_id and cwe_id.startswith("CWE-"):
|
247 |
+
cwe_ids.append(cwe_id)
|
248 |
+
|
249 |
+
rows.append({
|
250 |
+
"CVE_ID": cve_id,
|
251 |
+
"Description": description,
|
252 |
+
"Published": published[:10] if published else "N/A",
|
253 |
+
"Base_Score": base_score,
|
254 |
+
"Severity": severity.upper() if severity else "N/A",
|
255 |
+
"Attack_Vector": attack_vector.upper() if attack_vector else "N/A",
|
256 |
+
"CWE_IDs": ", ".join(cwe_ids) if cwe_ids else "N/A"
|
257 |
+
})
|
258 |
+
|
259 |
+
if not rows:
|
260 |
+
logger.warning("No valid CVE items could be parsed")
|
261 |
+
return pd.DataFrame()
|
262 |
+
|
263 |
+
df = pd.DataFrame(rows)
|
264 |
+
df["Base_Score"] = pd.to_numeric(df["Base_Score"], errors='coerce')
|
265 |
+
df = df.sort_values("Published", ascending=False, na_position='last').reset_index(drop=True)
|
266 |
+
|
267 |
+
return df
|
268 |
+
|
269 |
+
|
270 |
+
# --- LLM Integration ---
|
271 |
+
|
272 |
+
def generate_tailored_summary(cve_description: str, audience: str, hf_token: str) -> str:
|
273 |
+
"""
|
274 |
+
Generates a tailored CVE summary using the Hugging Face Inference API.
|
275 |
+
"""
|
276 |
+
if not hf_token:
|
277 |
+
return "β οΈ Hugging Face API token is not configured. Please set the HF_TOKEN environment variable."
|
278 |
+
if not cve_description or cve_description == "":
|
279 |
+
return "Please select a CVE from the table first."
|
280 |
+
if audience not in AUDIENCE_PROFILES:
|
281 |
+
return "Invalid audience selected."
|
282 |
+
|
283 |
+
api_url = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.2"
|
284 |
+
headers = {"Authorization": f"Bearer {hf_token}"}
|
285 |
+
profile = AUDIENCE_PROFILES[audience]
|
286 |
+
|
287 |
+
prompt = f"""<s>[INST] You are an expert cybersecurity analyst. Your task is to rewrite the following technical CVE description into a concise, actionable summary for a specific professional audience.
|
288 |
+
|
289 |
+
**Target Audience:** {audience}
|
290 |
+
- **Focus:** {profile.get('focus', 'N/A')}
|
291 |
+
- **Key Priorities:** {', '.join(profile.get('priorities', []))}
|
292 |
+
|
293 |
+
**Original CVE Description:**
|
294 |
+
---
|
295 |
+
{cve_description}
|
296 |
+
---
|
297 |
+
|
298 |
+
Provide a clear, concise summary (max 200 words) in a {profile.get('tone', 'professional')} tone, focusing on what matters most to this audience. Include actionable insights and recommendations. [/INST]"""
|
299 |
+
|
300 |
+
payload = {
|
301 |
+
"inputs": prompt,
|
302 |
+
"parameters": {
|
303 |
+
"max_new_tokens": 256,
|
304 |
+
"temperature": 0.7,
|
305 |
+
"top_p": 0.95,
|
306 |
+
"return_full_text": False
|
307 |
+
}
|
308 |
+
}
|
309 |
+
|
310 |
+
try:
|
311 |
+
response = SESSION.post(api_url, headers=headers, json=payload, timeout=60)
|
312 |
+
|
313 |
+
if response.status_code == 503:
|
314 |
+
return "β³ The model is currently loading. Please try again in a few moments."
|
315 |
+
elif response.status_code == 401:
|
316 |
+
return "β Invalid API token. Please check your Hugging Face token."
|
317 |
+
elif response.status_code != 200:
|
318 |
+
error_data = response.json()
|
319 |
+
error_message = error_data.get("error", "Unknown error")
|
320 |
+
logger.error(f"Inference API Error ({response.status_code}): {error_message}")
|
321 |
+
return f"β οΈ API Error: {error_message}"
|
322 |
+
|
323 |
+
result = response.json()
|
324 |
+
if isinstance(result, list) and len(result) > 0:
|
325 |
+
generated_text = result[0].get('generated_text', '').strip()
|
326 |
+
if generated_text:
|
327 |
+
return f"### Tailored Summary for {audience}\n\n{generated_text}"
|
328 |
+
else:
|
329 |
+
return "β οΈ The model returned an empty response. Please try again."
|
330 |
+
else:
|
331 |
+
return "β οΈ Unexpected response format from the API."
|
332 |
+
except requests.exceptions.Timeout:
|
333 |
+
logger.error("Timeout while calling Inference API")
|
334 |
+
return "β±οΈ Request timed out. The model might be overloaded. Please try again."
|
335 |
+
except Exception as e:
|
336 |
+
logger.error(f"Unexpected error in generate_tailored_summary: {e}")
|
337 |
+
return f"β An unexpected error occurred: {str(e)}"
|
338 |
+
|
339 |
+
|
340 |
+
# --- Analysis and Visualization ---
|
341 |
+
|
342 |
+
def analyze_and_visualize(
|
343 |
+
df: Optional[pd.DataFrame],
|
344 |
+
severity: str,
|
345 |
+
vector: str,
|
346 |
+
search: str
|
347 |
+
) -> Tuple[pd.DataFrame, Optional[px.bar], Optional[px.line], str]:
|
348 |
+
"""
|
349 |
+
Filters the main DataFrame and generates all outputs.
|
350 |
+
"""
|
351 |
+
if df is None or df.empty:
|
352 |
+
empty_df = pd.DataFrame(columns=["CVE_ID", "Severity", "Base_Score", "Description"])
|
353 |
+
return empty_df, None, None, "### No Data Loaded\n\nPlease select a year to load CVE data."
|
354 |
+
|
355 |
+
try:
|
356 |
+
filtered_df = df.copy()
|
357 |
+
|
358 |
+
# Apply filters
|
359 |
+
if severity and severity != "All":
|
360 |
+
filtered_df = filtered_df[filtered_df["Severity"] == severity]
|
361 |
+
if vector and vector != "All":
|
362 |
+
filtered_df = filtered_df[filtered_df["Attack_Vector"] == vector]
|
363 |
+
if search and search.strip():
|
364 |
+
search_term = search.strip()
|
365 |
+
masks = [
|
366 |
+
filtered_df[col].str.contains(search_term, case=False, na=False)
|
367 |
+
for col in ["CVE_ID", "Description", "CWE_IDs"] if col in filtered_df.columns
|
368 |
+
]
|
369 |
+
if masks:
|
370 |
+
combined_mask = pd.concat(masks, axis=1).any(axis=1)
|
371 |
+
filtered_df = filtered_df[combined_mask]
|
372 |
+
|
373 |
+
# Create outputs
|
374 |
+
severity_chart = create_severity_chart(filtered_df)
|
375 |
+
timeline_chart = create_timeline_chart(filtered_df)
|
376 |
+
summary_text = create_summary_text(filtered_df)
|
377 |
+
|
378 |
+
display_columns = ["CVE_ID", "Severity", "Base_Score", "Description"]
|
379 |
+
display_df = filtered_df[[col for col in display_columns if col in filtered_df.columns]]
|
380 |
+
|
381 |
+
return display_df, severity_chart, timeline_chart, summary_text
|
382 |
+
except Exception as e:
|
383 |
+
logger.error(f"Error in analyze_and_visualize: {e}", exc_info=True)
|
384 |
+
empty_df = pd.DataFrame(columns=["CVE_ID", "Severity", "Base_Score", "Description"])
|
385 |
+
return empty_df, None, None, f"### Error\n\nAn error occurred while filtering data: {str(e)}"
|
386 |
+
|
387 |
+
|
388 |
+
def create_severity_chart(df: pd.DataFrame) -> Optional[px.bar]:
|
389 |
+
"""Creates a bar chart for CVE severity distribution."""
|
390 |
+
if df.empty or "Severity" not in df.columns:
|
391 |
+
return None
|
392 |
+
try:
|
393 |
+
order = ["CRITICAL", "HIGH", "MEDIUM", "LOW", "N/A"]
|
394 |
+
counts = df["Severity"].value_counts().reindex(order, fill_value=0)
|
395 |
+
color_map = {"CRITICAL": "#8B0000", "HIGH": "#FF4500", "MEDIUM": "#FFA500", "LOW": "#FFD700", "N/A": "#D3D3D3"}
|
396 |
+
fig = px.bar(
|
397 |
+
x=counts.index, y=counts.values,
|
398 |
+
labels={"x": "Severity Level", "y": "Number of CVEs"},
|
399 |
+
title="CVE Severity Distribution",
|
400 |
+
color=counts.index, color_discrete_map=color_map, text=counts.values
|
401 |
+
)
|
402 |
+
fig.update_traces(texttemplate='%{text}', textposition='outside')
|
403 |
+
fig.update_layout(showlegend=False, xaxis={'categoryorder': 'array', 'categoryarray': order})
|
404 |
+
return fig
|
405 |
+
except Exception as e:
|
406 |
+
logger.error(f"Error creating severity chart: {e}")
|
407 |
+
return None
|
408 |
+
|
409 |
+
def create_timeline_chart(df: pd.DataFrame) -> Optional[px.line]:
|
410 |
+
"""Creates a line chart showing CVE publications over time."""
|
411 |
+
if df.empty or 'Published' not in df.columns:
|
412 |
+
return None
|
413 |
+
try:
|
414 |
+
df_copy = df.copy()
|
415 |
+
df_copy["Date"] = pd.to_datetime(df_copy["Published"], errors='coerce')
|
416 |
+
df_copy.dropna(subset=["Date"], inplace=True)
|
417 |
+
if df_copy.empty: return None
|
418 |
+
|
419 |
+
counts = df_copy.set_index("Date").resample('M').size()
|
420 |
+
if counts.empty: return None
|
421 |
+
|
422 |
+
fig = px.line(
|
423 |
+
x=counts.index, y=counts.values,
|
424 |
+
labels={"x": "Month", "y": "Number of CVEs"},
|
425 |
+
title="CVE Publications Timeline", markers=True
|
426 |
+
)
|
427 |
+
return fig
|
428 |
+
except Exception as e:
|
429 |
+
logger.error(f"Error creating timeline chart: {e}")
|
430 |
+
return None
|
431 |
+
|
432 |
+
|
433 |
+
def create_summary_text(df: pd.DataFrame) -> str:
|
434 |
+
"""Generates a markdown string with key statistics."""
|
435 |
+
if df.empty:
|
436 |
+
return "### No Results\n\nNo CVEs match your current filter criteria."
|
437 |
+
try:
|
438 |
+
total_cves = len(df)
|
439 |
+
sev_counts = df['Severity'].value_counts() if 'Severity' in df.columns else {}
|
440 |
+
scores = df['Base_Score'].dropna()
|
441 |
+
avg_score = f"{scores.mean():.2f}" if not scores.empty else "N/A"
|
442 |
+
max_score = f"{scores.max():.1f}" if not scores.empty else "N/A"
|
443 |
+
|
444 |
+
return "\n".join([
|
445 |
+
f"### Summary Statistics",
|
446 |
+
f"- **Total CVEs Found:** {total_cves:,}",
|
447 |
+
f"- **Critical:** {sev_counts.get('CRITICAL', 0):,}",
|
448 |
+
f"- **High:** {sev_counts.get('HIGH', 0):,}",
|
449 |
+
f"- **Medium:** {sev_counts.get('MEDIUM', 0):,}",
|
450 |
+
f"- **Low:** {sev_counts.get('LOW', 0):,}",
|
451 |
+
f"- **Average Base Score:** {avg_score}",
|
452 |
+
f"- **Maximum Base Score:** {max_score}"
|
453 |
+
])
|
454 |
+
except Exception as e:
|
455 |
+
logger.error(f"Error creating summary text: {e}")
|
456 |
+
return f"### Error\n\nCould not generate summary: {str(e)}"
|
457 |
+
|
458 |
+
# --- Gradio UI and Event Logic ---
|
459 |
+
|
460 |
+
def create_dashboard():
|
461 |
+
"""Builds the entire Gradio interface."""
|
462 |
+
|
463 |
+
with gr.Blocks(theme=gr.themes.Soft(), title="CVE Dashboard - NVD API v2.0 Analyzer") as dashboard:
|
464 |
+
|
465 |
+
df_state = gr.State(value=None)
|
466 |
+
selected_cve_description = gr.State(value="")
|
467 |
+
hf_token_state = gr.State(value=os.environ.get("HF_TOKEN", ""))
|
468 |
+
|
469 |
+
gr.Markdown(
|
470 |
+
"""
|
471 |
+
# π‘οΈ CVE Dashboard: NVD API v2.0 Analyzer
|
472 |
+
Explore Common Vulnerabilities and Exposures (CVE) data from the National Vulnerability Database, fetched live using the NVD API 2.0.
|
473 |
+
|
474 |
+
Select a year to load CVE data, apply filters, and leverage AI to generate tailored summaries for different professional audiences.
|
475 |
+
"""
|
476 |
+
)
|
477 |
+
|
478 |
+
with gr.Row():
|
479 |
+
with gr.Column(scale=1):
|
480 |
+
gr.Markdown("### ποΈ Controls")
|
481 |
+
year_dd = gr.Dropdown(
|
482 |
+
choices=list(range(MIN_YEAR, MAX_YEAR + 1))[::-1], value=CURRENT_YEAR,
|
483 |
+
label="1. Select Year", info="Choose a year to load CVE data"
|
484 |
+
)
|
485 |
+
|
486 |
+
gr.Markdown("### π Filters")
|
487 |
+
severity_dd = gr.Dropdown(
|
488 |
+
choices=["All", "CRITICAL", "HIGH", "MEDIUM", "LOW"], value="All",
|
489 |
+
label="2. Severity Level", info="Filter by CVSS severity rating"
|
490 |
+
)
|
491 |
+
vector_dd = gr.Dropdown(
|
492 |
+
choices=["All", "NETWORK", "ADJACENT_NETWORK", "LOCAL", "PHYSICAL"], value="All",
|
493 |
+
label="3. Attack Vector", info="Filter by attack vector type"
|
494 |
+
)
|
495 |
+
search_tb = gr.Textbox(
|
496 |
+
label="4. Search", placeholder="e.g., 'Log4j', 'SQL injection', 'CWE-89'...",
|
497 |
+
info="Search in CVE IDs, descriptions, and CWE IDs"
|
498 |
+
)
|
499 |
+
filter_btn = gr.Button("π Apply Filters", variant="primary", size="lg")
|
500 |
+
|
501 |
+
with gr.Column(scale=3):
|
502 |
+
summary_out = gr.Markdown(value="### Loading...")
|
503 |
+
with gr.Tabs():
|
504 |
+
with gr.TabItem("π Data Table"):
|
505 |
+
table_out = gr.DataFrame(
|
506 |
+
headers=["CVE_ID", "Severity", "Base_Score", "Description"],
|
507 |
+
wrap=True, max_rows=20, interactive=True, label="CVE Data"
|
508 |
+
)
|
509 |
+
with gr.TabItem("π Severity Analysis"):
|
510 |
+
plot_severity_out = gr.Plot(label="Severity Distribution")
|
511 |
+
with gr.TabItem("π Timeline Analysis"):
|
512 |
+
plot_timeline_out = gr.Plot(label="Publication Timeline")
|
513 |
+
|
514 |
+
with gr.Accordion(
|
515 |
+
"π€ AI-Powered CVE Analysis (Select a CVE from the table)",
|
516 |
+
open=False, visible=False
|
517 |
+
) as llm_accordion:
|
518 |
+
with gr.Row():
|
519 |
+
with gr.Column(scale=2):
|
520 |
+
original_desc_out = gr.Textbox(
|
521 |
+
label="Original CVE Description", lines=6, interactive=False, show_copy_button=True
|
522 |
+
)
|
523 |
+
with gr.Column(scale=1):
|
524 |
+
audience_dd = gr.Dropdown(
|
525 |
+
choices=list(AUDIENCE_PROFILES.keys()), value="Cybersecurity Professional",
|
526 |
+
label="Target Audience", info="Select your role for a tailored summary"
|
527 |
+
)
|
528 |
+
generate_btn = gr.Button("β¨ Generate Tailored Summary", variant="primary")
|
529 |
+
summary_llm_out = gr.Markdown(value="*Select an audience and click 'Generate'...*")
|
530 |
+
|
531 |
+
# --- Event Handlers ---
|
532 |
+
|
533 |
+
def on_year_change(year):
|
534 |
+
"""Handle year selection change."""
|
535 |
+
try:
|
536 |
+
if year is None:
|
537 |
+
return None, pd.DataFrame(), None, None, "### Please select a year"
|
538 |
+
df = get_cve_dataframe(int(year))
|
539 |
+
return df, *analyze_and_visualize(df, "All", "All", "")
|
540 |
+
except Exception as e:
|
541 |
+
logger.error(f"Error in on_year_change: {e}")
|
542 |
+
return None, pd.DataFrame(), None, None, f"### Error\n\n{str(e)}"
|
543 |
+
|
544 |
+
# --- Correct CVE selection logic ---
|
545 |
+
def on_select_cve(full_df: pd.DataFrame, evt: gr.SelectData):
|
546 |
+
"""Handle CVE row selection safely."""
|
547 |
+
try:
|
548 |
+
if full_df is None or evt.value is None:
|
549 |
+
return "", "", gr.update(visible=False)
|
550 |
+
|
551 |
+
# Get the CVE_ID from the selected row's first column value
|
552 |
+
selected_cve_id = evt.value
|
553 |
+
|
554 |
+
# Look up the full description in the master dataframe
|
555 |
+
cve_record = full_df[full_df["CVE_ID"] == selected_cve_id]
|
556 |
+
if cve_record.empty:
|
557 |
+
return "", "Could not find details for the selected CVE.", gr.update(visible=False)
|
558 |
+
|
559 |
+
full_description = cve_record.iloc[0]["Description"]
|
560 |
+
return full_description, full_description, gr.update(visible=True)
|
561 |
+
except Exception as e:
|
562 |
+
logger.error(f"Error in on_select_cve: {e}", exc_info=True)
|
563 |
+
return "", "Error loading CVE details", gr.update(visible=False)
|
564 |
+
|
565 |
+
# Wire up events
|
566 |
+
analysis_outputs = [table_out, plot_severity_out, plot_timeline_out, summary_out]
|
567 |
+
filter_inputs = [df_state, severity_dd, vector_dd, search_tb]
|
568 |
+
|
569 |
+
year_dd.change(
|
570 |
+
fn=on_year_change, inputs=[year_dd],
|
571 |
+
outputs=[df_state, *analysis_outputs], show_progress="full"
|
572 |
+
)
|
573 |
+
dashboard.load(
|
574 |
+
fn=on_year_change, inputs=[year_dd],
|
575 |
+
outputs=[df_state, *analysis_outputs], show_progress="full"
|
576 |
+
)
|
577 |
+
|
578 |
+
filter_btn.click(
|
579 |
+
fn=analyze_and_visualize, inputs=filter_inputs, outputs=analysis_outputs
|
580 |
+
)
|
581 |
+
search_tb.submit(
|
582 |
+
fn=analyze_and_visualize, inputs=filter_inputs, outputs=analysis_outputs
|
583 |
+
)
|
584 |
+
for control in [severity_dd, vector_dd]:
|
585 |
+
control.change(
|
586 |
+
fn=analyze_and_visualize, inputs=filter_inputs, outputs=analysis_outputs
|
587 |
+
)
|
588 |
+
|
589 |
+
table_out.select(
|
590 |
+
fn=on_select_cve,
|
591 |
+
inputs=[df_state],
|
592 |
+
outputs=[selected_cve_description, original_desc_out, llm_accordion],
|
593 |
+
# Use the cell value (CVE_ID) as the event data
|
594 |
+
_js="((df, evt) => { return [df, evt.value] })",
|
595 |
+
show_progress="hidden"
|
596 |
+
)
|
597 |
+
|
598 |
+
generate_btn.click(
|
599 |
+
fn=generate_tailored_summary,
|
600 |
+
inputs=[selected_cve_description, audience_dd, hf_token_state],
|
601 |
+
outputs=[summary_llm_out]
|
602 |
+
)
|
603 |
+
|
604 |
+
return dashboard
|
605 |
+
|
606 |
+
if __name__ == "__main__":
|
607 |
+
try:
|
608 |
+
if not os.environ.get("HF_TOKEN"):
|
609 |
+
logger.warning("HF_TOKEN not found. AI features will be limited.")
|
610 |
+
|
611 |
+
cve_dashboard = create_dashboard()
|
612 |
+
cve_dashboard.launch(server_name="0.0.0.0", show_error=True)
|
613 |
+
except Exception as e:
|
614 |
+
logger.error(f"Failed to launch application: {e}", exc_info=True)
|
615 |
+
raise
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
pandas
|
3 |
+
plotly
|
4 |
+
requests
|
5 |
+
urllib3
|