|
import streamlit as st |
|
from transformers import pipeline, AutoProcessor, AutoModel |
|
from scipy.io.wavfile import write as write_wav |
|
import numpy as np |
|
import torch |
|
|
|
def img2text(image_path): |
|
img2caption = pipeline("image-to-text", model="Salesforce/blip-image-captioning-base") |
|
return img2caption(image_path)[0]['generated_text'] |
|
|
|
def text2story(text): |
|
pipe = pipeline("text-generation", model="pranavpsv/genre-story-generator-v2") |
|
story_text = pipe(text, max_length=100)[0]['generated_text'] |
|
return story_text |
|
|
|
def text2audio(story_text): |
|
processor = AutoProcessor.from_pretrained("facebook/mms-tts-eng") |
|
model = AutoModel.from_pretrained("facebook/mms-tts-eng") |
|
|
|
inputs = processor(text=story_text, return_tensors="pt") |
|
with torch.no_grad(): |
|
output = model(**inputs).waveform |
|
|
|
audio_array = output.cpu().numpy().squeeze() |
|
sample_rate = 16000 |
|
|
|
return audio_array, sample_rate |
|
|
|
|
|
st.set_page_config(page_title="Your Image to Audio Story", page_icon="π¦") |
|
st.header("Turn Your Image to Audio Story") |
|
uploaded_file = st.file_uploader("Select an Image...") |
|
|
|
if uploaded_file is not None: |
|
bytes_data = uploaded_file.getvalue() |
|
with open(uploaded_file.name, "wb") as file: |
|
file.write(bytes_data) |
|
st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) |
|
|
|
|
|
st.text('Processing img2text...') |
|
scenario = img2text(uploaded_file.name) |
|
st.write(scenario) |
|
|
|
|
|
st.text('Generating a story...') |
|
story = text2story(scenario) |
|
st.write(story) |
|
|
|
|
|
st.text('Generating audio...') |
|
audio_array, sample_rate = text2audio(story) |
|
|
|
audio_file = "output_audio.wav" |
|
write_wav(audio_file, sample_rate, audio_array) |
|
st.audio(audio_file) |