Spaces:
Sleeping
Sleeping
Upload SentimentAnalyzer.py
Browse files- SentimentAnalyzer.py +86 -0
SentimentAnalyzer.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import re
|
3 |
+
import gradio as gr
|
4 |
+
import pandas as pd
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from pydantic import BaseModel, PydanticUserError, ConfigDict
|
7 |
+
from pydantic import BaseModel, ConfigDict
|
8 |
+
|
9 |
+
class MyModel(BaseModel):
|
10 |
+
request: 'starlette.requests.Request'
|
11 |
+
model_config = ConfigDict(arbitrary_types_allowed=True)
|
12 |
+
from pydantic_core import core_schema
|
13 |
+
from starlette.requests import Request
|
14 |
+
|
15 |
+
def get_pydantic_core_schema(request_type, handler):
|
16 |
+
return core_schema.any_schema()
|
17 |
+
|
18 |
+
Request.__get_pydantic_core_schema__ = get_pydantic_core_schema
|
19 |
+
|
20 |
+
|
21 |
+
from transformers import pipeline
|
22 |
+
|
23 |
+
pipe = pipeline("text-classification",
|
24 |
+
model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
analyzer=pipeline(task="text-classification", model="distilbert/distilbert-base-uncased-finetuned-sst-2-english")
|
29 |
+
|
30 |
+
|
31 |
+
def sentiment_analyzer(review):
|
32 |
+
sentiment = analyzer(review)
|
33 |
+
return sentiment[0]['label']
|
34 |
+
|
35 |
+
def sentiment_bar_chart(df):
|
36 |
+
sentiment_counts=df['Sentiment'].value_counts()
|
37 |
+
|
38 |
+
fig, ax=plt.subplots()
|
39 |
+
sentiment_counts.plot(kind='pie', ax=ax, autopct='%1.1f%%', color=['green', 'red'])
|
40 |
+
ax.set_title('Review Sentiment Counts')
|
41 |
+
ax.set_xlabel('Sentiment')
|
42 |
+
ax.set_ylabel('Count')
|
43 |
+
#ax.set_xticklabels(['Positive', 'Negative'], rotation=0)
|
44 |
+
|
45 |
+
return fig
|
46 |
+
|
47 |
+
|
48 |
+
def get_sentiment(review):
|
49 |
+
from textblob import TextBlob
|
50 |
+
analysis=TextBlob(review)
|
51 |
+
return analysis.sentiment.polarity
|
52 |
+
|
53 |
+
def read_reviews_and_analyze_sentiment(file_object):
|
54 |
+
print("file_obj received:", file_object)
|
55 |
+
|
56 |
+
# Handle file path or file object
|
57 |
+
if hasattr(file_object, 'name'):
|
58 |
+
file_name = file_object.name
|
59 |
+
else:
|
60 |
+
file_name = file_object
|
61 |
+
|
62 |
+
# Read file based on extension
|
63 |
+
if str(file_name).lower().endswith('.csv'):
|
64 |
+
df = pd.read_csv(file_object)
|
65 |
+
elif str(file_name).lower().endswith(('.xlsx', '.xls', '.xlsm', '.xlsb', '.ods', '.odt')):
|
66 |
+
df = pd.read_excel(file_object)
|
67 |
+
else:
|
68 |
+
raise ValueError("Unsupported file type. Please upload a CSV or Excel file.")
|
69 |
+
|
70 |
+
df['Sentiment']=df['Reviews'].apply(sentiment_analyzer)
|
71 |
+
chart_object=sentiment_bar_chart(df)
|
72 |
+
|
73 |
+
return df, chart_object
|
74 |
+
|
75 |
+
|
76 |
+
gr.close_all()
|
77 |
+
demo = gr.Interface(
|
78 |
+
fn=read_reviews_and_analyze_sentiment,
|
79 |
+
inputs=gr.File(file_types=['.xlsx','csv'], label='Upload your review comment file'),
|
80 |
+
outputs=[gr.Dataframe(label='Sentiments'), gr.Plot(label='Sentiment Analysis')],
|
81 |
+
title='KS Sentiment Analyzer',
|
82 |
+
description='This application will classify the sentiment of reviews based on an uploaded Excel file. The file must contain a column named "Reviews".'
|
83 |
+
)
|
84 |
+
|
85 |
+
demo.launch(share=True)
|
86 |
+
|