Spaces:
Running
Running
File size: 15,862 Bytes
1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 c36ecc0 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 c36ecc0 52e86c4 c36ecc0 52e86c4 c36ecc0 52e86c4 c36ecc0 52e86c4 c36ecc0 52e86c4 4e486ad 52e86c4 4e486ad 52e86c4 4e486ad 52e86c4 e0143f7 4e486ad e0143f7 4e486ad e0143f7 52e86c4 e0143f7 52e86c4 e0143f7 4e486ad 52e86c4 4e486ad 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 1356971 52e86c4 c36ecc0 52e86c4 c36ecc0 52e86c4 1356971 52e86c4 c36ecc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
import gradio as gr
import requests
import json
import time
import os
from typing import Dict, Optional
class FinancialAI:
def __init__(self, api_token: str):
self.api_token = api_token
self.headers = {
"Authorization": f"Bearer {api_token}",
"Content-Type": "application/json"
}
# Using models that actually work with Inference API
self.models = {
# Financial sentiment analysis models that work
"sentiment": "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis",
"finbert": "ProsusAI/finbert"
# Removed mistral and llama as they don't work with Inference API
}
self.endpoints = {
model_type: f"https://api-inference.huggingface.co/models/{model_name}"
for model_type, model_name in self.models.items()
}
def _make_request(self, endpoint: str, payload: dict, max_retries: int = 3) -> tuple:
"""Returns (result, error_message)"""
for attempt in range(max_retries):
try:
response = requests.post(endpoint, headers=self.headers, json=payload, timeout=30)
if response.status_code == 200:
result = response.json()
return result, None
elif response.status_code == 503:
error_data = response.json()
if "estimated_time" in error_data:
wait_time = min(error_data["estimated_time"], 60)
return None, f"Model loading, estimated wait: {wait_time}s"
time.sleep(20)
continue
elif response.status_code == 401:
return None, "β Invalid API token"
elif response.status_code == 403:
return None, "β Access denied"
elif response.status_code == 429:
return None, "β Rate limit exceeded"
else:
return None, f"β HTTP {response.status_code}: {response.text[:200]}"
except requests.exceptions.Timeout:
return None, "β Request timeout"
except requests.exceptions.ConnectionError:
return None, "β Connection error"
except Exception as e:
if attempt < max_retries - 1:
time.sleep(5)
continue
return None, f"β Error: {str(e)}"
return None, "β Max retries exceeded"
def sentiment_analysis(self, text: str) -> tuple:
"""Financial sentiment analysis using FinBERT"""
payload = {"inputs": text}
result, error = self._make_request(self.endpoints["finbert"], payload)
if result:
# FinBERT returns classification results
if isinstance(result, list) and len(result) > 0:
predictions = result[0]
if isinstance(predictions, list):
# Sort by score and get top prediction
top_prediction = max(predictions, key=lambda x: x['score'])
sentiment = top_prediction['label']
confidence = top_prediction['score']
return f"{sentiment.upper()} (confidence: {confidence:.2f})", None
else:
return str(predictions), None
return None, error or "No result returned"
def financial_news_sentiment(self, text: str) -> tuple:
"""Financial news sentiment using specialized model"""
payload = {"inputs": text}
result, error = self._make_request(self.endpoints["sentiment"], payload)
if result:
if isinstance(result, list) and len(result) > 0:
predictions = result[0]
if isinstance(predictions, list):
top_prediction = max(predictions, key=lambda x: x['score'])
sentiment = top_prediction['label']
confidence = top_prediction['score']
return f"{sentiment} (confidence: {confidence:.2f})", None
return None, error or "No result returned"
def generate_analysis(self, query: str) -> tuple:
"""Generate financial analysis using real AI/LLMs"""
# Option 1: Try Groq (fast and often free)
groq_key = os.getenv("GROQ_API_KEY")
if groq_key:
try:
headers = {
"Authorization": f"Bearer {groq_key}",
"Content-Type": "application/json"
}
payload = {
"model": "llama3-8b-8192",
"messages": [
{
"role": "system",
"content": "You are an expert financial analyst. Provide concise, actionable investment analysis and recommendations."
},
{
"role": "user",
"content": f"Analyze this financial information: {query}. Provide investment insights, market sentiment, and actionable recommendations."
}
],
"max_tokens": 250,
"temperature": 0.7
}
response = requests.post(
"https://api.groq.com/openai/v1/chat/completions",
headers=headers,
json=payload,
timeout=30
)
if response.status_code == 200:
result = response.json()
ai_response = result['choices'][0]['message']['content'].strip()
return f"π€ AI Analysis:\n{ai_response}", None
except Exception as e:
pass # Fall through to next option
# Option 2: Try OpenAI
openai_key = os.getenv("OPENAI_API_KEY")
if openai_key:
try:
headers = {
"Authorization": f"Bearer {openai_key}",
"Content-Type": "application/json"
}
payload = {
"model": "gpt-3.5-turbo",
"messages": [
{
"role": "system",
"content": "You are a financial analyst. Provide brief, actionable investment analysis."
},
{
"role": "user",
"content": f"Analyze: {query}"
}
],
"max_tokens": 200,
"temperature": 0.7
}
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=payload,
timeout=30
)
if response.status_code == 200:
result = response.json()
ai_response = result['choices'][0]['message']['content'].strip()
return f"π€ AI Analysis:\n{ai_response}", None
except Exception as e:
pass # Fall through to next option
# Option 3: Try Hugging Face Inference Providers
try:
from huggingface_hub import InferenceClient
client = InferenceClient(token=self.api_token)
messages = [
{
"role": "system",
"content": "You are a financial analyst. Provide brief investment analysis."
},
{
"role": "user",
"content": f"Analyze: {query}"
}
]
# Try Inference Providers
response = client.chat_completion(
messages=messages,
model="microsoft/DialoGPT-medium",
max_tokens=200,
temperature=0.7
)
if response and response.choices:
ai_response = response.choices[0].message.content.strip()
return f"π€ AI Analysis:\n{ai_response}", None
except Exception as e:
pass
# If all AI options fail, return error with instructions
return None, ("β No AI models available. To get real AI analysis, add API keys:\n"
"β’ GROQ_API_KEY (free at groq.com)\n"
"β’ OPENAI_API_KEY (at openai.com)\n"
"β’ Or use Hugging Face Inference Providers")
# Get API token - try multiple possible secret names and methods
def get_hf_token():
"""Try multiple methods to get the HF token"""
# Method 1: Environment variables
token_options = [
"HUGGINGFACE_API_TOKEN", "HF_TOKEN", "API_TOKEN", "TOKEN",
"HUGGINGFACE_TOKEN", "HF_API_TOKEN"
]
for var_name in token_options:
token = os.getenv(var_name)
if token and token != "your_huggingface_token_here":
return token
# Method 2: Try huggingface_hub
try:
from huggingface_hub import HfFolder
token = HfFolder.get_token()
if token:
return token
except:
pass
return None
API_TOKEN = get_hf_token() or "your_huggingface_token_here"
def test_token():
"""Test if the API token is working"""
# Debug: Show what token we're getting
token_preview = API_TOKEN[:8] + "..." + API_TOKEN[-4:] if len(API_TOKEN) > 12 else "TOO_SHORT"
print(f"π Debug - Token preview: {token_preview}")
print(f"π Debug - Token length: {len(API_TOKEN)}")
print(f"π Debug - Environment variables available: {list(os.environ.keys())}")
if API_TOKEN == "your_huggingface_token_here":
return "β Please set your Hugging Face API token! Check Spaces secrets."
if not API_TOKEN.startswith('hf_'):
return f"β Token should start with 'hf_' but starts with: {API_TOKEN[:3]}..."
if len(API_TOKEN) < 30:
return f"β Token appears too short: {len(API_TOKEN)} characters"
headers = {"Authorization": f"Bearer {API_TOKEN}"}
try:
# Use the correct whoami-v2 endpoint
response = requests.get("https://huggingface.co/api/whoami-v2", headers=headers, timeout=10)
if response.status_code == 200:
user_data = response.json()
username = user_data.get('name', 'Unknown')
return f"β
API token is valid! User: {username}"
elif response.status_code == 401:
return "β Token is invalid. Check your Spaces secret configuration."
else:
return f"β Token validation failed: HTTP {response.status_code} - {response.text[:100]}"
except Exception as e:
return f"β Token test error: {str(e)}"
financial_ai = FinancialAI(API_TOKEN)
def analyze_query(query, analysis_type):
if not query.strip():
return "Please enter a query."
# Test token first
token_status = test_token()
if "β" in token_status:
return token_status
try:
if analysis_type == "FinBERT Sentiment":
result, error = financial_ai.sentiment_analysis(query)
return result if result else f"β FinBERT Sentiment failed: {error}"
elif analysis_type == "Financial News Sentiment":
result, error = financial_ai.financial_news_sentiment(query)
return result if result else f"β Financial News Sentiment failed: {error}"
elif analysis_type == "AI Analysis":
result, error = financial_ai.generate_analysis(query)
return result if result else f"β AI Analysis failed: {error}"
else: # Comprehensive
output = "π COMPREHENSIVE FINANCIAL ANALYSIS\n\n"
# FinBERT Sentiment
sentiment1, s1_error = financial_ai.sentiment_analysis(query)
if sentiment1:
output += f"π FinBERT Sentiment: {sentiment1}\n\n"
else:
output += f"π FinBERT Sentiment: Failed - {s1_error}\n\n"
# Financial News Sentiment
sentiment2, s2_error = financial_ai.financial_news_sentiment(query)
if sentiment2:
output += f"π° Financial News Sentiment: {sentiment2}\n\n"
else:
output += f"π° Financial News Sentiment: Failed - {s2_error}\n\n"
# AI Analysis
analysis, a_error = financial_ai.generate_analysis(query)
if analysis:
output += f"π€ AI Analysis:\n{analysis}\n\n"
else:
output += f"π€ AI Analysis: Failed - {a_error}\n\n"
return output
except Exception as e:
return f"β Unexpected error: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Financial AI Analysis Platform") as demo:
gr.Markdown("# π¦ Financial AI Analysis Platform")
gr.Markdown("Get AI-powered financial insights using working Hugging Face models for sentiment analysis and market insights.")
# Add token status display
with gr.Row():
token_status = gr.Textbox(
label="π Token Status",
value=test_token(),
interactive=False
)
with gr.Row():
with gr.Column():
query_input = gr.Textbox(
label="π Enter your financial query or news",
placeholder="e.g., 'Apple stock is performing well' or 'Tesla reports strong earnings'",
lines=3
)
analysis_type = gr.Dropdown(
choices=["FinBERT Sentiment", "Financial News Sentiment", "AI Analysis", "Comprehensive"],
label="π Analysis Type",
value="FinBERT Sentiment"
)
analyze_btn = gr.Button("π Analyze", variant="primary")
with gr.Column():
output = gr.Textbox(
label="π‘ Analysis Results",
lines=12,
interactive=False
)
analyze_btn.click(
fn=analyze_query,
inputs=[query_input, analysis_type],
outputs=output
)
gr.Examples(
examples=[
["Apple stock is performing exceptionally well this quarter", "FinBERT Sentiment"],
["Tesla reports disappointing earnings, stock falls", "Financial News Sentiment"],
["Microsoft investment potential for 2025", "AI Analysis"],
["Amazon announces major expansion plans", "Comprehensive"]
],
inputs=[query_input, analysis_type]
)
gr.Markdown("""
### π Models Used:
- **FinBERT**: ProsusAI/finbert (financial sentiment analysis)
- **Financial News**: mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis
- **AI Analysis**: Real LLMs via Hugging Face Inference Providers
### β οΈ Note:
AI Analysis uses actual language models for genuine AI-generated insights.
If LLMs are unavailable, you can also integrate with OpenAI, Anthropic, or other providers.
""")
if __name__ == "__main__":
demo.launch(share=True) |