DreamSyncCo's picture
Update app.py
eb063de verified
import spaces
import gradio as gr
import torch
import argparse
from seed_vc_wrapper import SeedVCWrapper
# Set up device and torch configurations
if torch.cuda.is_available():
device = torch.device("cuda")
elif torch.backends.mps.is_available():
device = torch.device("mps")
else:
device = torch.device("cpu")
torch._inductor.config.coordinate_descent_tuning = True
torch._inductor.config.triton.unique_kernel_names = True
if hasattr(torch._inductor.config, "fx_graph_cache"):
# Experimental feature to reduce compilation times, will be on by default in future
torch._inductor.config.fx_graph_cache = True
dtype = torch.float16
# Global variables to store model instances
vc_wrapper_v1 = SeedVCWrapper()
@spaces.GPU
def convert_voice_v1_wrapper(source_audio_path, target_audio_path, diffusion_steps=10,
length_adjust=1.0, inference_cfg_rate=0.7,
auto_f0_adjust=True, pitch_shift=0, stream_output=True):
"""
Wrapper function for vc_wrapper.convert_voice that can be decorated with @spaces.GPU
"""
# Use yield from to properly handle the generator
yield from vc_wrapper_v1.convert_voice(
source=source_audio_path,
target=target_audio_path,
diffusion_steps=diffusion_steps,
length_adjust=length_adjust,
inference_cfg_rate=inference_cfg_rate,
f0_condition=True, # Always True as requested - removed from UI
auto_f0_adjust=auto_f0_adjust,
pitch_shift=pitch_shift,
stream_output=stream_output
)
def create_v1_interface():
# Set up Gradio interface
description = (
"<b>Zero shot voice conversion across all Indian languages</b>, achieved by finetuning a Seed-VoiceConversion checkpoint with Indic datasets. <br> "
"For instructions on <b>local deployment</b> and further finetuning, please refer [<b>Plachtaa/seed-vc</b>](https://github.com/Plachtaa/seed-vc) . The finetuned checkpoints are available for download on our [<b>model page</b>](https://huggingface.co/DreamSyncCo/IndicVoiceChanger). <br>"
"<b>Note:</b> Any reference audio will be forcefully clipped to <b>25s</b> if beyond this length.<br> "
"If total duration of source and reference audio exceeds <b>30s</b>, source audio will be processed in chunks.<br>")
inputs = [
gr.Audio(type="filepath", label="Source Audio"),
gr.Audio(type="filepath", label="Reference Audio"),
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps",
info="10 by default, 50~100 for best quality"),
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust",
info="<1.0 for speed-up speech, >1.0 for slow-down speech"),
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate",
info="has subtle influence"),
gr.Checkbox(label="Auto F0 adjust", value=True,
info="Roughly adjust F0 to match target voice."),
gr.Slider(label='Pitch shift', minimum=-24, maximum=24, step=1, value=0,
info="Pitch shift in semitones, only works when F0 conditioned model is used"),
]
examples = [
["examples/source/Hindi.wav", "examples/reference/Marathi.wav", 25, 1.0, 0.7, True, 0],
["examples/source/Assamese.wav", "examples/reference/Kannada.wav", 25, 1.0, 0.7, False, 0],
["examples/source/Malayalam.wav", "examples/reference/Telugu.wav", 25, 1.0, 0.7, False, 0],
["examples/source/Tamil.wav", "examples/reference/Bengali.wav", 25, 1.0, 0.7, True, 0],
]
outputs = [
gr.Audio(label="Stream Output Audio", streaming=True, format='mp3'),
gr.Audio(label="Full Output Audio", streaming=False, format='wav')
]
return gr.Interface(
fn=convert_voice_v1_wrapper,
description=description,
inputs=inputs,
outputs=outputs,
title="<b>Voice Conversion for Indian Languages</b>",
examples=examples,
cache_examples=False,
)
def main(args):
# Create interface
v1_interface = create_v1_interface()
# Launch the interface
v1_interface.launch()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--compile", type=bool, default=True)
args = parser.parse_args()
main(args)