Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import torch | |
import argparse | |
from seed_vc_wrapper import SeedVCWrapper | |
# Set up device and torch configurations | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
elif torch.backends.mps.is_available(): | |
device = torch.device("mps") | |
else: | |
device = torch.device("cpu") | |
torch._inductor.config.coordinate_descent_tuning = True | |
torch._inductor.config.triton.unique_kernel_names = True | |
if hasattr(torch._inductor.config, "fx_graph_cache"): | |
# Experimental feature to reduce compilation times, will be on by default in future | |
torch._inductor.config.fx_graph_cache = True | |
dtype = torch.float16 | |
# Global variables to store model instances | |
vc_wrapper_v1 = SeedVCWrapper() | |
def convert_voice_v1_wrapper(source_audio_path, target_audio_path, diffusion_steps=10, | |
length_adjust=1.0, inference_cfg_rate=0.7, | |
auto_f0_adjust=True, pitch_shift=0, stream_output=True): | |
""" | |
Wrapper function for vc_wrapper.convert_voice that can be decorated with @spaces.GPU | |
""" | |
# Use yield from to properly handle the generator | |
yield from vc_wrapper_v1.convert_voice( | |
source=source_audio_path, | |
target=target_audio_path, | |
diffusion_steps=diffusion_steps, | |
length_adjust=length_adjust, | |
inference_cfg_rate=inference_cfg_rate, | |
f0_condition=True, # Always True as requested - removed from UI | |
auto_f0_adjust=auto_f0_adjust, | |
pitch_shift=pitch_shift, | |
stream_output=stream_output | |
) | |
def create_v1_interface(): | |
# Set up Gradio interface | |
description = ( | |
"<b>Zero shot voice conversion across all Indian languages</b>, achieved by finetuning a Seed-VoiceConversion checkpoint with Indic datasets. <br> " | |
"For instructions on <b>local deployment</b> and further finetuning, please refer [<b>Plachtaa/seed-vc</b>](https://github.com/Plachtaa/seed-vc) . The finetuned checkpoints are available for download on our [<b>model page</b>](https://huggingface.co/DreamSyncCo/IndicVoiceChanger). <br>" | |
"<b>Note:</b> Any reference audio will be forcefully clipped to <b>25s</b> if beyond this length.<br> " | |
"If total duration of source and reference audio exceeds <b>30s</b>, source audio will be processed in chunks.<br>") | |
inputs = [ | |
gr.Audio(type="filepath", label="Source Audio"), | |
gr.Audio(type="filepath", label="Reference Audio"), | |
gr.Slider(minimum=1, maximum=200, value=10, step=1, label="Diffusion Steps", | |
info="10 by default, 50~100 for best quality"), | |
gr.Slider(minimum=0.5, maximum=2.0, step=0.1, value=1.0, label="Length Adjust", | |
info="<1.0 for speed-up speech, >1.0 for slow-down speech"), | |
gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0.7, label="Inference CFG Rate", | |
info="has subtle influence"), | |
gr.Checkbox(label="Auto F0 adjust", value=True, | |
info="Roughly adjust F0 to match target voice."), | |
gr.Slider(label='Pitch shift', minimum=-24, maximum=24, step=1, value=0, | |
info="Pitch shift in semitones, only works when F0 conditioned model is used"), | |
] | |
examples = [ | |
["examples/source/Hindi.wav", "examples/reference/Marathi.wav", 25, 1.0, 0.7, True, 0], | |
["examples/source/Assamese.wav", "examples/reference/Kannada.wav", 25, 1.0, 0.7, False, 0], | |
["examples/source/Malayalam.wav", "examples/reference/Telugu.wav", 25, 1.0, 0.7, False, 0], | |
["examples/source/Tamil.wav", "examples/reference/Bengali.wav", 25, 1.0, 0.7, True, 0], | |
] | |
outputs = [ | |
gr.Audio(label="Stream Output Audio", streaming=True, format='mp3'), | |
gr.Audio(label="Full Output Audio", streaming=False, format='wav') | |
] | |
return gr.Interface( | |
fn=convert_voice_v1_wrapper, | |
description=description, | |
inputs=inputs, | |
outputs=outputs, | |
title="<b>Voice Conversion for Indian Languages</b>", | |
examples=examples, | |
cache_examples=False, | |
) | |
def main(args): | |
# Create interface | |
v1_interface = create_v1_interface() | |
# Launch the interface | |
v1_interface.launch() | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--compile", type=bool, default=True) | |
args = parser.parse_args() | |
main(args) |