Spaces:
Running
Running
shift TTS
Browse files- app.py +558 -0
- audionar.py +623 -0
app.py
CHANGED
@@ -16,6 +16,538 @@ import textwrap
|
|
16 |
from tts import StyleTTS2
|
17 |
import audresample
|
18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
device = 0 if torch.cuda.is_available() else "cpu"
|
21 |
duration = 2 # limit processing of audio
|
@@ -582,4 +1114,30 @@ with gr.Blocks(theme='huggingface', css=css_buttons) as demo:
|
|
582 |
submit_btn.click(recognize, input, outputs)
|
583 |
|
584 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
585 |
demo.launch(debug=True)
|
|
|
16 |
from tts import StyleTTS2
|
17 |
import audresample
|
18 |
|
19 |
+
# --
|
20 |
+
# -*- coding: utf-8 -*-
|
21 |
+
|
22 |
+
# https://huggingface.co/spaces/dpc/mmstts/tree/main
|
23 |
+
# https://huggingface.co/spaces/mms-meta/MMS/blob/main/tts.py
|
24 |
+
|
25 |
+
import json
|
26 |
+
import soundfile
|
27 |
+
import re
|
28 |
+
import unicodedata
|
29 |
+
import gradio as gr
|
30 |
+
import textwrap
|
31 |
+
import numpy as np
|
32 |
+
import torch
|
33 |
+
import nltk
|
34 |
+
from num2words import num2words
|
35 |
+
from num2word_greek.numbers2words import convert_numbers
|
36 |
+
from vits import VitsModel, VitsTokenizer
|
37 |
+
|
38 |
+
nltk.download('punkt', download_dir='./')
|
39 |
+
nltk.download('punkt_tab', download_dir='./')
|
40 |
+
nltk.data.path.append('.')
|
41 |
+
|
42 |
+
device = 'cpu'
|
43 |
+
|
44 |
+
|
45 |
+
def fix_vocals(text, lang='ron'):
|
46 |
+
|
47 |
+
# Longer phrases should come before shorter ones to prevent partial matches.
|
48 |
+
|
49 |
+
ron_replacements = {
|
50 |
+
'ţ': 'ț',
|
51 |
+
'ț': 'ts',
|
52 |
+
'î': 'u',
|
53 |
+
'â': 'a',
|
54 |
+
'ş': 's',
|
55 |
+
'w': 'oui',
|
56 |
+
'k': 'c',
|
57 |
+
'l': 'll',
|
58 |
+
# Math symbols
|
59 |
+
'sqrt': ' rădăcina pătrată din ',
|
60 |
+
'^': ' la puterea ',
|
61 |
+
'+': ' plus ',
|
62 |
+
' - ': ' minus ', # only replace if standalone so to not say minus if is a-b-c
|
63 |
+
'*': ' ori ', # times
|
64 |
+
'/': ' împărțit la ', # divided by
|
65 |
+
'=': ' egal cu ', # equals
|
66 |
+
'pi': ' pi ',
|
67 |
+
'<': ' mai mic decât ',
|
68 |
+
'>': ' mai mare decât',
|
69 |
+
'%': ' la sută ', # percent (from previous)
|
70 |
+
'(': ' paranteză deschisă ',
|
71 |
+
')': ' paranteză închisă ',
|
72 |
+
'[': ' paranteză pătrată deschisă ',
|
73 |
+
']': ' paranteză pătrată închisă ',
|
74 |
+
'{': ' acoladă deschisă ',
|
75 |
+
'}': ' acoladă închisă ',
|
76 |
+
'≠': ' nu este egal cu ',
|
77 |
+
'≤': ' mai mic sau egal cu ',
|
78 |
+
'≥': ' mai mare sau egal cu ',
|
79 |
+
'≈': ' aproximativ ',
|
80 |
+
'∞': ' infinit ',
|
81 |
+
'€': ' euro ',
|
82 |
+
'$': ' dolar ',
|
83 |
+
'£': ' liră ',
|
84 |
+
'&': ' și ', # and
|
85 |
+
'@': ' la ', # at
|
86 |
+
'#': ' diez ', # hash
|
87 |
+
'∑': ' sumă ',
|
88 |
+
'∫': ' integrală ',
|
89 |
+
'√': ' rădăcina pătrată a ', # more generic square root
|
90 |
+
}
|
91 |
+
|
92 |
+
eng_replacements = {
|
93 |
+
'wik': 'weaky',
|
94 |
+
'sh': 'ss',
|
95 |
+
'ch': 'ttss',
|
96 |
+
'oo': 'oeo',
|
97 |
+
# Math symbols for English
|
98 |
+
'sqrt': ' square root of ',
|
99 |
+
'^': ' to the power of ',
|
100 |
+
'+': ' plus ',
|
101 |
+
' - ': ' minus ',
|
102 |
+
'*': ' times ',
|
103 |
+
' / ': ' divided by ',
|
104 |
+
'=': ' equals ',
|
105 |
+
'pi': ' pi ',
|
106 |
+
'<': ' less than ',
|
107 |
+
'>': ' greater than ',
|
108 |
+
# Additional common math symbols from previous list
|
109 |
+
'%': ' percent ',
|
110 |
+
'(': ' open parenthesis ',
|
111 |
+
')': ' close parenthesis ',
|
112 |
+
'[': ' open bracket ',
|
113 |
+
']': ' close bracket ',
|
114 |
+
'{': ' open curly brace ',
|
115 |
+
'}': ' close curly brace ',
|
116 |
+
'∑': ' sum ',
|
117 |
+
'∫': ' integral ',
|
118 |
+
'√': ' square root of ',
|
119 |
+
'≠': ' not equals ',
|
120 |
+
'≤': ' less than or equals ',
|
121 |
+
'≥': ' greater than or equals ',
|
122 |
+
'≈': ' approximately ',
|
123 |
+
'∞': ' infinity ',
|
124 |
+
'€': ' euro ',
|
125 |
+
'$': ' dollar ',
|
126 |
+
'£': ' pound ',
|
127 |
+
'&': ' and ',
|
128 |
+
'@': ' at ',
|
129 |
+
'#': ' hash ',
|
130 |
+
}
|
131 |
+
|
132 |
+
serbian_replacements = {
|
133 |
+
'rn': 'rrn',
|
134 |
+
'ć': 'č',
|
135 |
+
'c': 'č',
|
136 |
+
'đ': 'd',
|
137 |
+
'j': 'i',
|
138 |
+
'l': 'lll',
|
139 |
+
'w': 'v',
|
140 |
+
# https://huggingface.co/facebook/mms-tts-rmc-script_latin
|
141 |
+
'sqrt': 'kvadratni koren iz',
|
142 |
+
'^': ' na stepen ',
|
143 |
+
'+': ' plus ',
|
144 |
+
' - ': ' minus ',
|
145 |
+
'*': ' puta ',
|
146 |
+
' / ': ' podeljeno sa ',
|
147 |
+
'=': ' jednako ',
|
148 |
+
'pi': ' pi ',
|
149 |
+
'<': ' manje od ',
|
150 |
+
'>': ' veće od ',
|
151 |
+
'%': ' procenat ',
|
152 |
+
'(': ' otvorena zagrada ',
|
153 |
+
')': ' zatvorena zagrada ',
|
154 |
+
'[': ' otvorena uglasta zagrada ',
|
155 |
+
']': ' zatvorena uglasta zagrada ',
|
156 |
+
'{': ' otvorena vitičasta zagrada ',
|
157 |
+
'}': ' zatvorena vitičasta zagrada ',
|
158 |
+
'∑': ' suma ',
|
159 |
+
'∫': ' integral ',
|
160 |
+
'√': ' kvadratni koren ',
|
161 |
+
'≠': ' nije jednako ',
|
162 |
+
'≤': ' manje ili jednako od ',
|
163 |
+
'≥': ' veće ili jednako od ',
|
164 |
+
'≈': ' približno ',
|
165 |
+
'∞': ' beskonačnost ',
|
166 |
+
'€': ' evro ',
|
167 |
+
'$': ' dolar ',
|
168 |
+
'£': ' funta ',
|
169 |
+
'&': ' i ',
|
170 |
+
'@': ' et ',
|
171 |
+
'#': ' taraba ',
|
172 |
+
# Others
|
173 |
+
# 'rn': 'rrn',
|
174 |
+
# 'ć': 'č',
|
175 |
+
# 'c': 'č',
|
176 |
+
# 'đ': 'd',
|
177 |
+
# 'l': 'le',
|
178 |
+
# 'ij': 'i',
|
179 |
+
# 'ji': 'i',
|
180 |
+
# 'j': 'i',
|
181 |
+
# 'služ': 'sloooozz', # 'službeno'
|
182 |
+
# 'suver': 'siuveeerra', # 'suverena'
|
183 |
+
# 'država': 'dirrezav', # 'država'
|
184 |
+
# 'iči': 'ici', # 'Graniči'
|
185 |
+
# 's ': 'se', # a s with space
|
186 |
+
# 'q': 'ku',
|
187 |
+
# 'w': 'aou',
|
188 |
+
# 'z': 's',
|
189 |
+
# "š": "s",
|
190 |
+
# 'th': 'ta',
|
191 |
+
# 'v': 'vv',
|
192 |
+
# "ć": "č",
|
193 |
+
# "đ": "ď",
|
194 |
+
# "lj": "ľ",
|
195 |
+
# "nj": "ň",
|
196 |
+
# "ž": "z",
|
197 |
+
# "c": "č"
|
198 |
+
}
|
199 |
+
|
200 |
+
deu_replacements = {
|
201 |
+
'sch': 'sh',
|
202 |
+
'ch': 'kh',
|
203 |
+
'ie': 'ee',
|
204 |
+
'ei': 'ai',
|
205 |
+
'ä': 'ae',
|
206 |
+
'ö': 'oe',
|
207 |
+
'ü': 'ue',
|
208 |
+
'ß': 'ss',
|
209 |
+
# Math symbols for German
|
210 |
+
'sqrt': ' Quadratwurzel aus ',
|
211 |
+
'^': ' hoch ',
|
212 |
+
'+': ' plus ',
|
213 |
+
' - ': ' minus ',
|
214 |
+
'*': ' mal ',
|
215 |
+
' / ': ' geteilt durch ',
|
216 |
+
'=': ' gleich ',
|
217 |
+
'pi': ' pi ',
|
218 |
+
'<': ' kleiner als ',
|
219 |
+
'>': ' größer als',
|
220 |
+
# Additional common math symbols from previous list
|
221 |
+
'%': ' prozent ',
|
222 |
+
'(': ' Klammer auf ',
|
223 |
+
')': ' Klammer zu ',
|
224 |
+
'[': ' eckige Klammer auf ',
|
225 |
+
']': ' eckige Klammer zu ',
|
226 |
+
'{': ' geschweifte Klammer auf ',
|
227 |
+
'}': ' geschweifte Klammer zu ',
|
228 |
+
'∑': ' Summe ',
|
229 |
+
'∫': ' Integral ',
|
230 |
+
'√': ' Quadratwurzel ',
|
231 |
+
'≠': ' ungleich ',
|
232 |
+
'≤': ' kleiner oder gleich ',
|
233 |
+
'≥': ' größer oder gleich ',
|
234 |
+
'≈': ' ungefähr ',
|
235 |
+
'∞': ' unendlich ',
|
236 |
+
'€': ' euro ',
|
237 |
+
'$': ' dollar ',
|
238 |
+
'£': ' pfund ',
|
239 |
+
'&': ' und ',
|
240 |
+
'@': ' at ', # 'Klammeraffe' is also common but 'at' is simpler
|
241 |
+
'#': ' raute ',
|
242 |
+
}
|
243 |
+
|
244 |
+
fra_replacements = {
|
245 |
+
# French specific phonetic replacements (add as needed)
|
246 |
+
# e.g., 'ç': 's', 'é': 'e', etc.
|
247 |
+
'w': 'v',
|
248 |
+
# Math symbols for French
|
249 |
+
'sqrt': ' racine carrée de ',
|
250 |
+
'^': ' à la puissance ',
|
251 |
+
'+': ' plus ',
|
252 |
+
' - ': ' moins ', # tiré ;
|
253 |
+
'*': ' fois ',
|
254 |
+
' / ': ' divisé par ',
|
255 |
+
'=': ' égale ',
|
256 |
+
'pi': ' pi ',
|
257 |
+
'<': ' inférieur à ',
|
258 |
+
'>': ' supérieur à ',
|
259 |
+
# Add more common math symbols as needed for French
|
260 |
+
'%': ' pour cent ',
|
261 |
+
'(': ' parenthèse ouverte ',
|
262 |
+
')': ' parenthèse fermée ',
|
263 |
+
'[': ' crochet ouvert ',
|
264 |
+
']': ' crochet fermé ',
|
265 |
+
'{': ' accolade ouverte ',
|
266 |
+
'}': ' accolade fermée ',
|
267 |
+
'∑': ' somme ',
|
268 |
+
'∫': ' intégrale ',
|
269 |
+
'√': ' racine carrée ',
|
270 |
+
'≠': ' n\'égale pas ',
|
271 |
+
'≤': ' inférieur ou égal à ',
|
272 |
+
'≥': ' supérieur ou égal à ',
|
273 |
+
'≈': ' approximativement ',
|
274 |
+
'∞': ' infini ',
|
275 |
+
'€': ' euro ',
|
276 |
+
'$': ' dollar ',
|
277 |
+
'£': ' livre ',
|
278 |
+
'&': ' et ',
|
279 |
+
'@': ' arobase ',
|
280 |
+
'#': ' dièse ',
|
281 |
+
}
|
282 |
+
|
283 |
+
hun_replacements = {
|
284 |
+
# Hungarian specific phonetic replacements (add as needed)
|
285 |
+
# e.g., 'á': 'a', 'é': 'e', etc.
|
286 |
+
'ch': 'ts',
|
287 |
+
'cs': 'tz',
|
288 |
+
'g': 'gk',
|
289 |
+
'w': 'v',
|
290 |
+
'z': 'zz',
|
291 |
+
# Math symbols for Hungarian
|
292 |
+
'sqrt': ' négyzetgyök ',
|
293 |
+
'^': ' hatvány ',
|
294 |
+
'+': ' plusz ',
|
295 |
+
' - ': ' mínusz ',
|
296 |
+
'*': ' szorozva ',
|
297 |
+
' / ': ' osztva ',
|
298 |
+
'=': ' egyenlő ',
|
299 |
+
'pi': ' pi ',
|
300 |
+
'<': ' kisebb mint ',
|
301 |
+
'>': ' nagyobb mint ',
|
302 |
+
# Add more common math symbols as needed for Hungarian
|
303 |
+
'%': ' százalék ',
|
304 |
+
'(': ' nyitó zárójel ',
|
305 |
+
')': ' záró zárójel ',
|
306 |
+
'[': ' nyitó szögletes zárójel ',
|
307 |
+
']': ' záró szögletes zárójel ',
|
308 |
+
'{': ' nyitó kapcsos zárójel ',
|
309 |
+
'}': ' záró kapcsos zárójel ',
|
310 |
+
'∑': ' szumma ',
|
311 |
+
'∫': ' integrál ',
|
312 |
+
'√': ' négyzetgyök ',
|
313 |
+
'≠': ' nem egyenlő ',
|
314 |
+
'≤': ' kisebb vagy egyenlő ',
|
315 |
+
'≥': ' nagyobb vagy egyenlő ',
|
316 |
+
'≈': ' körülbelül ',
|
317 |
+
'∞': ' végtelen ',
|
318 |
+
'€': ' euró ',
|
319 |
+
'$': ' dollár ',
|
320 |
+
'£': ' font ',
|
321 |
+
'&': ' és ',
|
322 |
+
'@': ' kukac ',
|
323 |
+
'#': ' kettőskereszt ',
|
324 |
+
}
|
325 |
+
|
326 |
+
grc_replacements = {
|
327 |
+
# Ancient Greek specific phonetic replacements (add as needed)
|
328 |
+
# These are more about transliterating Greek letters if they are in the input text.
|
329 |
+
# Math symbols for Ancient Greek (literal translations)
|
330 |
+
'sqrt': ' τετραγωνικὴ ῥίζα ',
|
331 |
+
'^': ' εἰς τὴν δύναμιν ',
|
332 |
+
'+': ' σὺν ',
|
333 |
+
' - ': ' χωρὶς ',
|
334 |
+
'*': ' πολλάκις ',
|
335 |
+
' / ': ' διαιρέω ',
|
336 |
+
'=': ' ἴσον ',
|
337 |
+
'pi': ' πῖ ',
|
338 |
+
'<': ' ἔλαττον ',
|
339 |
+
'>': ' μεῖζον ',
|
340 |
+
# Add more common math symbols as needed for Ancient Greek
|
341 |
+
'%': ' τοῖς ἑκατόν ', # tois hekaton - 'of the hundred'
|
342 |
+
'(': ' ἀνοικτὴ παρένθεσις ',
|
343 |
+
')': ' κλειστὴ παρένθεσις ',
|
344 |
+
'[': ' ἀνοικτὴ ἀγκύλη ',
|
345 |
+
']': ' κλειστὴ ἀγκύλη ',
|
346 |
+
'{': ' ἀνοικτὴ σγουρὴ ἀγκύλ�� ',
|
347 |
+
'}': ' κλειστὴ σγουρὴ ἀγκύλη ',
|
348 |
+
'∑': ' ἄθροισμα ',
|
349 |
+
'∫': ' ὁλοκλήρωμα ',
|
350 |
+
'√': ' τετραγωνικὴ ῥίζα ',
|
351 |
+
'≠': ' οὐκ ἴσον ',
|
352 |
+
'≤': ' ἔλαττον ἢ ἴσον ',
|
353 |
+
'≥': ' μεῖζον ἢ ἴσον ',
|
354 |
+
'≈': ' περίπου ',
|
355 |
+
'∞': ' ἄπειρον ',
|
356 |
+
'€': ' εὐρώ ',
|
357 |
+
'$': ' δολάριον ',
|
358 |
+
'£': ' λίρα ',
|
359 |
+
'&': ' καὶ ',
|
360 |
+
'@': ' ἀτ ', # at
|
361 |
+
'#': ' δίεση ', # hash
|
362 |
+
}
|
363 |
+
|
364 |
+
|
365 |
+
# Select the appropriate replacement dictionary based on the language
|
366 |
+
replacements_map = {
|
367 |
+
'grc': grc_replacements,
|
368 |
+
'ron': ron_replacements,
|
369 |
+
'eng': eng_replacements,
|
370 |
+
'deu': deu_replacements,
|
371 |
+
'fra': fra_replacements,
|
372 |
+
'hun': hun_replacements,
|
373 |
+
'rmc-script_latin': serbian_replacements,
|
374 |
+
}
|
375 |
+
|
376 |
+
current_replacements = replacements_map.get(lang)
|
377 |
+
if current_replacements:
|
378 |
+
# Sort replacements by length of the key in descending order.
|
379 |
+
# This is crucial for correctly replacing multi-character strings (like 'sqrt', 'sch')
|
380 |
+
# before their shorter substrings ('s', 'ch', 'q', 'r', 't').
|
381 |
+
sorted_replacements = sorted(current_replacements.items(), key=lambda item: len(item[0]), reverse=True)
|
382 |
+
for old, new in sorted_replacements:
|
383 |
+
text = text.replace(old, new)
|
384 |
+
return text
|
385 |
+
else:
|
386 |
+
# If the language is not supported, return the original text
|
387 |
+
print(f"Warning: Language '{lang}' not supported for text replacement. Returning original text.")
|
388 |
+
return text
|
389 |
+
|
390 |
+
|
391 |
+
def _num2words(text='01234', lang=None):
|
392 |
+
if lang == 'grc':
|
393 |
+
return convert_numbers(text)
|
394 |
+
return num2words(text, lang=lang) # HAS TO BE kwarg lang=lang
|
395 |
+
|
396 |
+
|
397 |
+
def transliterate_number(number_string,
|
398 |
+
lang=None):
|
399 |
+
if lang == 'rmc-script_latin':
|
400 |
+
lang = 'sr'
|
401 |
+
exponential_pronoun = ' puta deset na stepen od '
|
402 |
+
comma = ' tačka '
|
403 |
+
elif lang == 'ron':
|
404 |
+
lang = 'ro'
|
405 |
+
exponential_pronoun = ' tízszer a erejéig '
|
406 |
+
comma = ' virgulă '
|
407 |
+
elif lang == 'hun':
|
408 |
+
lang = 'hu'
|
409 |
+
exponential_pronoun = ' tízszer a erejéig '
|
410 |
+
comma = ' virgula '
|
411 |
+
elif lang == 'deu':
|
412 |
+
exponential_pronoun = ' mal zehn hoch '
|
413 |
+
comma = ' komma '
|
414 |
+
elif lang == 'fra':
|
415 |
+
lang = 'fr'
|
416 |
+
exponential_pronoun = ' puissance '
|
417 |
+
comma = 'virgule'
|
418 |
+
elif lang == 'grc':
|
419 |
+
exponential_pronoun = ' εις την δυναμην του '
|
420 |
+
comma = 'κομμα'
|
421 |
+
else:
|
422 |
+
lang = lang[:2]
|
423 |
+
exponential_pronoun = ' times ten to the power of '
|
424 |
+
comma = ' point '
|
425 |
+
|
426 |
+
def replace_number(match):
|
427 |
+
prefix = match.group(1) or ""
|
428 |
+
number_part = match.group(2)
|
429 |
+
suffix = match.group(5) or ""
|
430 |
+
|
431 |
+
try:
|
432 |
+
if 'e' in number_part.lower():
|
433 |
+
base, exponent = number_part.lower().split('e')
|
434 |
+
words = _num2words(base, lang=lang) + exponential_pronoun + _num2words(exponent, lang=lang)
|
435 |
+
elif '.' in number_part:
|
436 |
+
integer_part, decimal_part = number_part.split('.')
|
437 |
+
words = _num2words(integer_part, lang=lang) + comma + " ".join(
|
438 |
+
[_num2words(digit, lang=lang) for digit in decimal_part])
|
439 |
+
else:
|
440 |
+
words = _num2words(number_part, lang=lang)
|
441 |
+
return prefix + words + suffix
|
442 |
+
except ValueError:
|
443 |
+
return match.group(0) # Return original if conversion fails
|
444 |
+
|
445 |
+
pattern = r'([^\d]*)(\d+(\.\d+)?([Ee][+-]?\d+)?)([^\d]*)'
|
446 |
+
return re.sub(pattern, replace_number, number_string)
|
447 |
+
|
448 |
+
|
449 |
+
language_names = ['Ancient greek',
|
450 |
+
'English',
|
451 |
+
'Deutsch',
|
452 |
+
'French',
|
453 |
+
'Hungarian',
|
454 |
+
'Romanian',
|
455 |
+
'Serbian (Approx.)']
|
456 |
+
|
457 |
+
|
458 |
+
def audionar_tts(text=None,
|
459 |
+
lang='romanian'):
|
460 |
+
|
461 |
+
# https://huggingface.co/dkounadis/artificial-styletts2/blob/main/msinference.py
|
462 |
+
|
463 |
+
lang = lang.lower()
|
464 |
+
|
465 |
+
# https://huggingface.co/spaces/mms-meta/MMS
|
466 |
+
|
467 |
+
if 'hun' in lang:
|
468 |
+
|
469 |
+
lang_code = 'hun'
|
470 |
+
|
471 |
+
elif any([i in lang for i in ['ser', 'bosn', 'herzegov', 'montenegr', 'macedon']]):
|
472 |
+
|
473 |
+
# romani carpathian (has also Vlax) - cooler voice
|
474 |
+
lang_code = 'rmc-script_latin'
|
475 |
+
|
476 |
+
elif 'rom' in lang:
|
477 |
+
|
478 |
+
lang_code = 'ron'
|
479 |
+
|
480 |
+
elif 'ger' in lang or 'deu' in lang or 'allem' in lang:
|
481 |
+
|
482 |
+
lang_code = 'deu'
|
483 |
+
|
484 |
+
elif 'french' in lang:
|
485 |
+
|
486 |
+
lang_code = 'fra'
|
487 |
+
|
488 |
+
elif 'eng' in lang:
|
489 |
+
|
490 |
+
lang_code = 'eng'
|
491 |
+
|
492 |
+
elif 'ancient greek' in lang:
|
493 |
+
|
494 |
+
lang_code = 'grc'
|
495 |
+
|
496 |
+
else:
|
497 |
+
|
498 |
+
lang_code = lang.split()[0].strip() # latin & future option
|
499 |
+
|
500 |
+
# LATIN / GRC / CYRILLIC
|
501 |
+
|
502 |
+
text = only_greek_or_only_latin(text, lang=lang_code) # assure gr-chars if lang=='grc' / latin if lang!='grc'
|
503 |
+
|
504 |
+
# NUMERALS (^ in math expression found & substituted here before arriving to fix_vocals)
|
505 |
+
|
506 |
+
text = transliterate_number(text, lang=lang_code)
|
507 |
+
|
508 |
+
# PRONOUNC.
|
509 |
+
|
510 |
+
text = fix_vocals(text, lang=lang_code)
|
511 |
+
|
512 |
+
# VITS
|
513 |
+
|
514 |
+
global cached_lang_code, cached_net_g, cached_tokenizer
|
515 |
+
|
516 |
+
if 'cached_lang_code' not in globals() or cached_lang_code != lang_code:
|
517 |
+
cached_lang_code = lang_code
|
518 |
+
cached_net_g = VitsModel.from_pretrained(f'facebook/mms-tts-{lang_code}').eval().to(device)
|
519 |
+
cached_tokenizer = VitsTokenizer.from_pretrained(f'facebook/mms-tts-{lang_code}')
|
520 |
+
|
521 |
+
net_g = cached_net_g
|
522 |
+
tokenizer = cached_tokenizer
|
523 |
+
|
524 |
+
total_audio = []
|
525 |
+
|
526 |
+
if not isinstance(text, list):
|
527 |
+
text = textwrap.wrap(text, width=439)
|
528 |
+
|
529 |
+
for _t in text:
|
530 |
+
inputs = tokenizer(_t, return_tensors="pt")
|
531 |
+
with torch.no_grad():
|
532 |
+
x = net_g(input_ids=inputs.input_ids.to(device),
|
533 |
+
attention_mask=inputs.attention_mask.to(device),
|
534 |
+
lang_code=lang_code,
|
535 |
+
)[0, :]
|
536 |
+
total_audio.append(x)
|
537 |
+
|
538 |
+
print(f'\n\n_______________________________ {_t} {x.shape=}')
|
539 |
+
|
540 |
+
x = torch.cat(total_audio).cpu().numpy()
|
541 |
+
|
542 |
+
tmp_file = f'_speech.wav'
|
543 |
+
|
544 |
+
soundfile.write(tmp_file, x, 16000)
|
545 |
+
|
546 |
+
return tmp_file
|
547 |
+
|
548 |
+
|
549 |
+
# --
|
550 |
+
|
551 |
|
552 |
device = 0 if torch.cuda.is_available() else "cpu"
|
553 |
duration = 2 # limit processing of audio
|
|
|
1114 |
submit_btn.click(recognize, input, outputs)
|
1115 |
|
1116 |
|
1117 |
+
with gr.Tab("audionar TTS"):
|
1118 |
+
with gr.Row():
|
1119 |
+
text_input = gr.Textbox(
|
1120 |
+
lines=4,
|
1121 |
+
value='Η γρηγορη καφετι αλεπου πειδαει πανω απο τον τεμπελη σκυλο.',
|
1122 |
+
label="Type text for TTS"
|
1123 |
+
)
|
1124 |
+
lang_dropdown = gr.Dropdown(
|
1125 |
+
choices=language_names,
|
1126 |
+
label="TTS language",
|
1127 |
+
value="Ancient greek",
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
# Create a button to trigger the TTS function
|
1131 |
+
tts_button = gr.Button("Generate Audio")
|
1132 |
+
|
1133 |
+
# Create the output audio component
|
1134 |
+
audio_output = gr.Audio(label="Generated Audio")
|
1135 |
+
|
1136 |
+
# Link the button click event to the mms_tts function
|
1137 |
+
tts_button.click(
|
1138 |
+
fn=audionar_tts,
|
1139 |
+
inputs=[text_input, lang_dropdown],
|
1140 |
+
outputs=audio_output
|
1141 |
+
)
|
1142 |
+
|
1143 |
demo.launch(debug=True)
|
audionar.py
ADDED
@@ -0,0 +1,623 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from torch import nn
|
5 |
+
from transformers.modeling_utils import PreTrainedModel
|
6 |
+
from transformers.configuration_utils import PretrainedConfig
|
7 |
+
import json
|
8 |
+
import os
|
9 |
+
import re
|
10 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
11 |
+
import phonemizer
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
OSCILLATION = {
|
17 |
+
'deu': [1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1],
|
18 |
+
'rmc-script_latin': [2, 2, 1, 2, 2],
|
19 |
+
'hun': [1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1],
|
20 |
+
'fra': [1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1],
|
21 |
+
'eng': [1, 2, 2, 1, 2, 2],
|
22 |
+
'grc': [1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1],
|
23 |
+
'ron': [1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2],
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
def has_non_roman_characters(input_string):
|
28 |
+
# Find any character outside the ASCII range
|
29 |
+
non_roman_pattern = re.compile(r"[^\x00-\x7F]")
|
30 |
+
|
31 |
+
# Search the input string for non-Roman characters
|
32 |
+
match = non_roman_pattern.search(input_string)
|
33 |
+
has_non_roman = match is not None
|
34 |
+
return has_non_roman
|
35 |
+
|
36 |
+
|
37 |
+
class VitsConfig(PretrainedConfig):
|
38 |
+
|
39 |
+
model_type = "vits"
|
40 |
+
|
41 |
+
def __init__(
|
42 |
+
self,
|
43 |
+
vocab_size=38,
|
44 |
+
hidden_size=192,
|
45 |
+
num_hidden_layers=6,
|
46 |
+
num_attention_heads=2,
|
47 |
+
use_bias=True,
|
48 |
+
ffn_dim=768,
|
49 |
+
ffn_kernel_size=3,
|
50 |
+
flow_size=192,
|
51 |
+
# hidden_act="relu",
|
52 |
+
upsample_initial_channel=512,
|
53 |
+
upsample_rates=[8, 8, 2, 2],
|
54 |
+
upsample_kernel_sizes=[16, 16, 4, 4],
|
55 |
+
resblock_kernel_sizes=[3, 7, 11],
|
56 |
+
resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
|
57 |
+
prior_encoder_num_flows=4,
|
58 |
+
prior_encoder_num_wavenet_layers=4,
|
59 |
+
wavenet_kernel_size=5,
|
60 |
+
**kwargs,
|
61 |
+
):
|
62 |
+
self.vocab_size = vocab_size
|
63 |
+
self.hidden_size = hidden_size
|
64 |
+
self.num_hidden_layers = num_hidden_layers
|
65 |
+
self.num_attention_heads = num_attention_heads
|
66 |
+
self.use_bias = use_bias
|
67 |
+
self.ffn_dim = ffn_dim
|
68 |
+
self.ffn_kernel_size = ffn_kernel_size
|
69 |
+
self.flow_size = flow_size
|
70 |
+
self.upsample_initial_channel = upsample_initial_channel
|
71 |
+
self.upsample_rates = upsample_rates
|
72 |
+
self.upsample_kernel_sizes = upsample_kernel_sizes
|
73 |
+
self.resblock_kernel_sizes = resblock_kernel_sizes
|
74 |
+
self.resblock_dilation_sizes = resblock_dilation_sizes
|
75 |
+
self.prior_encoder_num_flows = prior_encoder_num_flows
|
76 |
+
self.prior_encoder_num_wavenet_layers = prior_encoder_num_wavenet_layers
|
77 |
+
self.wavenet_kernel_size = wavenet_kernel_size
|
78 |
+
super().__init__()
|
79 |
+
|
80 |
+
|
81 |
+
class VitsWaveNet(torch.nn.Module):
|
82 |
+
def __init__(self, config, num_layers):
|
83 |
+
super().__init__()
|
84 |
+
self.hidden_size = config.hidden_size
|
85 |
+
self.num_layers = num_layers
|
86 |
+
self.in_layers = torch.nn.ModuleList()
|
87 |
+
self.res_skip_layers = torch.nn.ModuleList()
|
88 |
+
# if hasattr(nn.utils.parametrizations, "weight_norm"):
|
89 |
+
# # raise ValueError
|
90 |
+
weight_norm = nn.utils.parametrizations.weight_norm
|
91 |
+
# else:
|
92 |
+
# raise ValueError
|
93 |
+
# # weight_norm = nn.utils.weight_norm
|
94 |
+
for i in range(num_layers):
|
95 |
+
|
96 |
+
in_layer = torch.nn.Conv1d(
|
97 |
+
in_channels=config.hidden_size,
|
98 |
+
out_channels=2 * config.hidden_size,
|
99 |
+
kernel_size=config.wavenet_kernel_size,
|
100 |
+
dilation=1,
|
101 |
+
padding=2,
|
102 |
+
)
|
103 |
+
in_layer = weight_norm(in_layer, name="weight")
|
104 |
+
self.in_layers.append(in_layer)
|
105 |
+
|
106 |
+
# last one is not necessary
|
107 |
+
if i < num_layers - 1:
|
108 |
+
res_skip_channels = 2 * config.hidden_size
|
109 |
+
else:
|
110 |
+
res_skip_channels = config.hidden_size
|
111 |
+
res_skip_layer = torch.nn.Conv1d(config.hidden_size, res_skip_channels, 1)
|
112 |
+
res_skip_layer = weight_norm(res_skip_layer, name="weight")
|
113 |
+
self.res_skip_layers.append(res_skip_layer)
|
114 |
+
|
115 |
+
def forward(self,
|
116 |
+
inputs):
|
117 |
+
outputs = torch.zeros_like(inputs)
|
118 |
+
num_channels = torch.IntTensor([self.hidden_size])[0]
|
119 |
+
for i in range(self.num_layers):
|
120 |
+
in_act = self.in_layers[i](inputs)
|
121 |
+
# global_states = torch.zeros_like(hidden_states) # style ?
|
122 |
+
# acts = fused_add_tanh_sigmoid_multiply(hidden_states, global_states, num_channels_tensor[0])
|
123 |
+
# --
|
124 |
+
# def fused_add_tanh_sigmoid_multiply(input_a, input_b, num_channels):
|
125 |
+
# in_act = input_a # + input_b
|
126 |
+
t_act = torch.tanh(in_act[:, :num_channels, :])
|
127 |
+
s_act = torch.sigmoid(in_act[:, num_channels:, :])
|
128 |
+
acts = t_act * s_act
|
129 |
+
res_skip_acts = self.res_skip_layers[i](acts)
|
130 |
+
if i < self.num_layers - 1:
|
131 |
+
res_acts = res_skip_acts[:, : self.hidden_size, :]
|
132 |
+
inputs = inputs + res_acts
|
133 |
+
outputs = outputs + res_skip_acts[:, self.hidden_size :, :]
|
134 |
+
else:
|
135 |
+
outputs = outputs + res_skip_acts
|
136 |
+
return outputs
|
137 |
+
|
138 |
+
# Copied from transformers.models.speecht5.modeling_speecht5.HifiGanResidualBlock
|
139 |
+
class HifiGanResidualBlock(nn.Module):
|
140 |
+
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), leaky_relu_slope=0.1):
|
141 |
+
super().__init__()
|
142 |
+
self.leaky_relu_slope = leaky_relu_slope
|
143 |
+
|
144 |
+
self.convs1 = nn.ModuleList(
|
145 |
+
[
|
146 |
+
nn.Conv1d(
|
147 |
+
channels,
|
148 |
+
channels,
|
149 |
+
kernel_size,
|
150 |
+
stride=1,
|
151 |
+
dilation=dilation[i],
|
152 |
+
padding=self.get_padding(kernel_size, dilation[i]),
|
153 |
+
)
|
154 |
+
for i in range(len(dilation))
|
155 |
+
]
|
156 |
+
)
|
157 |
+
self.convs2 = nn.ModuleList(
|
158 |
+
[
|
159 |
+
nn.Conv1d(
|
160 |
+
channels,
|
161 |
+
channels,
|
162 |
+
kernel_size,
|
163 |
+
stride=1,
|
164 |
+
dilation=1,
|
165 |
+
padding=self.get_padding(kernel_size, 1),
|
166 |
+
)
|
167 |
+
for _ in range(len(dilation))
|
168 |
+
]
|
169 |
+
)
|
170 |
+
|
171 |
+
def get_padding(self, kernel_size, dilation=1):
|
172 |
+
# 1, 3, 5, 15
|
173 |
+
return (kernel_size * dilation - dilation) // 2
|
174 |
+
|
175 |
+
def forward(self, hidden_states):
|
176 |
+
for conv1, conv2 in zip(self.convs1, self.convs2):
|
177 |
+
residual = hidden_states
|
178 |
+
hidden_states = nn.functional.leaky_relu(hidden_states, negative_slope=self.leaky_relu_slope)
|
179 |
+
hidden_states = conv1(hidden_states)
|
180 |
+
hidden_states = nn.functional.leaky_relu(hidden_states, negative_slope=self.leaky_relu_slope)
|
181 |
+
hidden_states = conv2(hidden_states)
|
182 |
+
hidden_states = hidden_states + residual
|
183 |
+
return hidden_states
|
184 |
+
|
185 |
+
|
186 |
+
class VitsHifiGan(nn.Module):
|
187 |
+
def __init__(self, config):
|
188 |
+
super().__init__()
|
189 |
+
self.config = config
|
190 |
+
self.num_kernels = len(config.resblock_kernel_sizes)
|
191 |
+
self.num_upsamples = len(config.upsample_rates)
|
192 |
+
self.conv_pre = nn.Conv1d(
|
193 |
+
config.flow_size,
|
194 |
+
config.upsample_initial_channel,
|
195 |
+
kernel_size=7,
|
196 |
+
stride=1,
|
197 |
+
padding=3,
|
198 |
+
)
|
199 |
+
|
200 |
+
self.upsampler = nn.ModuleList()
|
201 |
+
for i, (upsample_rate, kernel_size) in enumerate(zip(config.upsample_rates, config.upsample_kernel_sizes)):
|
202 |
+
self.upsampler.append(
|
203 |
+
nn.ConvTranspose1d(
|
204 |
+
config.upsample_initial_channel // (2**i),
|
205 |
+
config.upsample_initial_channel // (2 ** (i + 1)),
|
206 |
+
kernel_size=kernel_size,
|
207 |
+
stride=upsample_rate,
|
208 |
+
padding=(kernel_size - upsample_rate) // 2,
|
209 |
+
)
|
210 |
+
)
|
211 |
+
|
212 |
+
self.resblocks = nn.ModuleList()
|
213 |
+
for i in range(len(self.upsampler)):
|
214 |
+
channels = config.upsample_initial_channel // (2 ** (i + 1))
|
215 |
+
for kernel_size, dilation in zip(config.resblock_kernel_sizes, config.resblock_dilation_sizes):
|
216 |
+
self.resblocks.append(HifiGanResidualBlock(channels, kernel_size, dilation))
|
217 |
+
self.conv_post = nn.Conv1d(channels, 1, kernel_size=7, stride=1, padding=3, bias=False)
|
218 |
+
|
219 |
+
def forward(self,
|
220 |
+
spectrogram):
|
221 |
+
hidden_states = self.conv_pre(spectrogram)
|
222 |
+
for i in range(self.num_upsamples):
|
223 |
+
hidden_states = F.leaky_relu(hidden_states, negative_slope=.1, inplace=True)
|
224 |
+
hidden_states = self.upsampler[i](hidden_states)
|
225 |
+
res_state = self.resblocks[i * self.num_kernels](hidden_states)
|
226 |
+
for j in range(1, self.num_kernels):
|
227 |
+
res_state += self.resblocks[i * self.num_kernels + j](hidden_states)
|
228 |
+
hidden_states = res_state / self.num_kernels
|
229 |
+
hidden_states = F.leaky_relu(hidden_states, negative_slope=.01, inplace=True)
|
230 |
+
hidden_states = self.conv_post(hidden_states)
|
231 |
+
waveform = torch.tanh(hidden_states)
|
232 |
+
return waveform
|
233 |
+
|
234 |
+
|
235 |
+
class VitsResidualCouplingLayer(nn.Module):
|
236 |
+
def __init__(self, config):
|
237 |
+
super().__init__()
|
238 |
+
self.half_channels = config.flow_size // 2
|
239 |
+
self.conv_pre = nn.Conv1d(self.half_channels, config.hidden_size, 1)
|
240 |
+
self.wavenet = VitsWaveNet(config, num_layers=config.prior_encoder_num_wavenet_layers)
|
241 |
+
self.conv_post = nn.Conv1d(config.hidden_size, self.half_channels, 1)
|
242 |
+
|
243 |
+
def forward(self,
|
244 |
+
x,
|
245 |
+
reverse=False):
|
246 |
+
first_half, second_half = torch.split(x, [self.half_channels] * 2, dim=1)
|
247 |
+
hidden_states = self.conv_pre(first_half)
|
248 |
+
hidden_states = self.wavenet(hidden_states)
|
249 |
+
mean = self.conv_post(hidden_states)
|
250 |
+
second_half = (second_half - mean)
|
251 |
+
outputs = torch.cat([first_half, second_half], dim=1)
|
252 |
+
return outputs
|
253 |
+
|
254 |
+
|
255 |
+
class VitsResidualCouplingBlock(nn.Module):
|
256 |
+
def __init__(self, config):
|
257 |
+
super().__init__()
|
258 |
+
self.flows = nn.ModuleList()
|
259 |
+
for _ in range(config.prior_encoder_num_flows):
|
260 |
+
self.flows.append(VitsResidualCouplingLayer(config))
|
261 |
+
|
262 |
+
def forward(self, x, reverse=False):
|
263 |
+
# x L [1, 192, 481]
|
264 |
+
for flow in reversed(self.flows):
|
265 |
+
x = torch.flip(x, [1]) # flipud CHANNELs
|
266 |
+
x = flow(x, reverse=True)
|
267 |
+
return x
|
268 |
+
|
269 |
+
|
270 |
+
class VitsAttention(nn.Module):
|
271 |
+
"""has no positional info"""
|
272 |
+
|
273 |
+
def __init__(self, config):
|
274 |
+
super().__init__()
|
275 |
+
self.embed_dim = config.hidden_size
|
276 |
+
self.num_heads = config.num_attention_heads
|
277 |
+
|
278 |
+
|
279 |
+
|
280 |
+
self.head_dim = self.embed_dim // self.num_heads
|
281 |
+
self.scaling = self.head_dim**-0.5
|
282 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
|
283 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
|
284 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
|
285 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.use_bias)
|
286 |
+
|
287 |
+
def _shape(self, tensor, seq_len, bsz):
|
288 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
289 |
+
|
290 |
+
def forward(
|
291 |
+
self,
|
292 |
+
hidden_states,
|
293 |
+
layer_head_mask = None,
|
294 |
+
output_attentions = False,
|
295 |
+
):
|
296 |
+
|
297 |
+
|
298 |
+
bsz, tgt_len, _ = hidden_states.size()
|
299 |
+
|
300 |
+
# Q
|
301 |
+
|
302 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
303 |
+
|
304 |
+
# K/V
|
305 |
+
hidden_states = hidden_states[:, :40, :] # drop time-frames from k/v [bs*2, time, 96=ch]
|
306 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
307 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
308 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
309 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
310 |
+
key_states = key_states.view(*proj_shape)
|
311 |
+
value_states = value_states.view(*proj_shape)
|
312 |
+
|
313 |
+
|
314 |
+
|
315 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
316 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
317 |
+
attn_output = torch.bmm(attn_weights,
|
318 |
+
value_states)
|
319 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
320 |
+
attn_output = attn_output.transpose(1, 2)
|
321 |
+
|
322 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
323 |
+
# partitioned aross GPUs when using tensor-parallelism.
|
324 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
325 |
+
|
326 |
+
attn_output = self.out_proj(attn_output)
|
327 |
+
|
328 |
+
return attn_output
|
329 |
+
|
330 |
+
|
331 |
+
class VitsFeedForward(nn.Module):
|
332 |
+
def __init__(self, config):
|
333 |
+
super().__init__()
|
334 |
+
self.conv_1 = nn.Conv1d(config.hidden_size, config.ffn_dim, config.ffn_kernel_size, padding=1)
|
335 |
+
self.conv_2 = nn.Conv1d(config.ffn_dim, config.hidden_size, config.ffn_kernel_size, padding=1)
|
336 |
+
|
337 |
+
def forward(self, hidden_states):
|
338 |
+
hidden_states = hidden_states.permute(0, 2, 1)
|
339 |
+
hidden_states = F.relu(self.conv_1(hidden_states)) # inplace changes sound ;
|
340 |
+
hidden_states = self.conv_2(hidden_states)
|
341 |
+
hidden_states = hidden_states.permute(0, 2, 1)
|
342 |
+
return hidden_states
|
343 |
+
|
344 |
+
|
345 |
+
class VitsEncoderLayer(nn.Module):
|
346 |
+
def __init__(self, config):
|
347 |
+
super().__init__()
|
348 |
+
self.attention = VitsAttention(config)
|
349 |
+
self.layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-5)
|
350 |
+
self.feed_forward = VitsFeedForward(config)
|
351 |
+
self.final_layer_norm = nn.LayerNorm(config.hidden_size, eps=1e-5)
|
352 |
+
|
353 |
+
def forward(
|
354 |
+
self,
|
355 |
+
hidden_states,
|
356 |
+
output_attentions = False,
|
357 |
+
):
|
358 |
+
residual = hidden_states
|
359 |
+
hidden_states = self.attention(
|
360 |
+
hidden_states=hidden_states,
|
361 |
+
# attention_mask=attention_mask,
|
362 |
+
output_attentions=output_attentions,
|
363 |
+
)
|
364 |
+
|
365 |
+
|
366 |
+
hidden_states = self.layer_norm(residual + hidden_states)
|
367 |
+
|
368 |
+
residual = hidden_states
|
369 |
+
hidden_states = self.feed_forward(hidden_states)
|
370 |
+
|
371 |
+
hidden_states = self.final_layer_norm(residual + hidden_states)
|
372 |
+
|
373 |
+
outputs = (hidden_states,)
|
374 |
+
|
375 |
+
return outputs
|
376 |
+
|
377 |
+
|
378 |
+
class VitsEncoder(nn.Module):
|
379 |
+
def __init__(self, config):
|
380 |
+
super().__init__()
|
381 |
+
self.config = config
|
382 |
+
self.layers = nn.ModuleList([VitsEncoderLayer(config) for _ in range(config.num_hidden_layers)])
|
383 |
+
|
384 |
+
def forward(
|
385 |
+
self,
|
386 |
+
hidden_states):
|
387 |
+
for _layer in self.layers:
|
388 |
+
layer_outputs = _layer(hidden_states)
|
389 |
+
hidden_states = layer_outputs[0]
|
390 |
+
return hidden_states
|
391 |
+
|
392 |
+
|
393 |
+
|
394 |
+
class VitsTextEncoder(nn.Module):
|
395 |
+
"""
|
396 |
+
Has VitsEncoder
|
397 |
+
"""
|
398 |
+
|
399 |
+
def __init__(self, config):
|
400 |
+
super().__init__()
|
401 |
+
self.config = config
|
402 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, config.pad_token_id)
|
403 |
+
self.encoder = VitsEncoder(config) # 6 Layers of VitsAttention
|
404 |
+
self.project = nn.Conv1d(config.hidden_size, config.flow_size * 2, kernel_size=1)
|
405 |
+
|
406 |
+
def forward(self,
|
407 |
+
input_ids
|
408 |
+
):
|
409 |
+
hidden_states = self.embed_tokens(input_ids) * 4 #Actually4-or-4.856406460551018-@-845-len-ids-deu
|
410 |
+
stats = self.project(self.encoder(hidden_states=hidden_states).transpose(1, 2)).transpose(1, 2)
|
411 |
+
return stats[:, :, :self.config.flow_size] # prior_means
|
412 |
+
|
413 |
+
|
414 |
+
class VitsPreTrainedModel(PreTrainedModel):
|
415 |
+
config_class = VitsConfig
|
416 |
+
base_model_prefix = "vits"
|
417 |
+
main_input_name = "input_ids"
|
418 |
+
supports_gradient_checkpointing = True
|
419 |
+
|
420 |
+
|
421 |
+
|
422 |
+
class VitsModel(VitsPreTrainedModel):
|
423 |
+
def __init__(self, config):
|
424 |
+
super().__init__(config)
|
425 |
+
self.config = config
|
426 |
+
self.text_encoder = VitsTextEncoder(config) # has VitsEncoder that includes 6L of VitsAttention
|
427 |
+
self.flow = VitsResidualCouplingBlock(config)
|
428 |
+
self.decoder = VitsHifiGan(config)
|
429 |
+
|
430 |
+
def forward(
|
431 |
+
self,
|
432 |
+
input_ids = None,
|
433 |
+
attention_mask = None,
|
434 |
+
speaker_id = None,
|
435 |
+
output_attentions = None,
|
436 |
+
output_hidden_states = None,
|
437 |
+
return_dict = None,
|
438 |
+
labels = None,
|
439 |
+
speed = None,
|
440 |
+
lang_code = 'deu', # speed oscillation pattern per voice/lang
|
441 |
+
):
|
442 |
+
mask_dtype = self.text_encoder.embed_tokens.weight.dtype
|
443 |
+
if attention_mask is not None:
|
444 |
+
input_padding_mask = attention_mask.unsqueeze(-1).to(mask_dtype)
|
445 |
+
else:
|
446 |
+
raise ValueError
|
447 |
+
input_padding_mask = torch.ones_like(input_ids).unsqueeze(-1).to(mask_dtype)
|
448 |
+
prior_means = self.text_encoder(input_ids=input_ids)
|
449 |
+
|
450 |
+
input_padding_mask = input_padding_mask.transpose(1, 2)
|
451 |
+
|
452 |
+
|
453 |
+
bs, in_len, _ = prior_means.shape
|
454 |
+
# VITS Duration Oscillation
|
455 |
+
pattern = OSCILLATION.get(lang_code, [1, 2, 1])
|
456 |
+
|
457 |
+
duration = torch.tensor(pattern,
|
458 |
+
device=prior_means.device).repeat(int(in_len / len(pattern)) + 2)[None, None, :in_len] # perhaps define [1, 2, 1] per voice or language
|
459 |
+
duration[:, :, 0] = 4
|
460 |
+
duration[:, :, -1] = 3
|
461 |
+
# ATTN
|
462 |
+
predicted_lengths = torch.clamp_min(torch.sum(duration, [1, 2]), 1).long()
|
463 |
+
indices = torch.arange(predicted_lengths.max(), dtype=predicted_lengths.dtype, device=predicted_lengths.device)
|
464 |
+
output_padding_mask = indices.unsqueeze(0) < predicted_lengths.unsqueeze(1)
|
465 |
+
output_padding_mask = output_padding_mask.unsqueeze(1).to(input_padding_mask.dtype)
|
466 |
+
attn_mask = torch.unsqueeze(input_padding_mask, 2) * torch.unsqueeze(output_padding_mask, -1)
|
467 |
+
batch_size, _, output_length, input_length = attn_mask.shape
|
468 |
+
cum_duration = torch.cumsum(duration, -1).view(batch_size * input_length, 1)
|
469 |
+
indices = torch.arange(output_length, dtype=duration.dtype, device=duration.device)
|
470 |
+
valid_indices = indices.unsqueeze(0) < cum_duration
|
471 |
+
valid_indices = valid_indices.to(attn_mask.dtype).view(batch_size, input_length, output_length)
|
472 |
+
padded_indices = valid_indices - nn.functional.pad(valid_indices, [0, 0, 1, 0, 0, 0])[:, :-1]
|
473 |
+
attn = padded_indices.unsqueeze(1).transpose(2, 3) * attn_mask
|
474 |
+
attn = attn[:, 0, :, :]
|
475 |
+
|
476 |
+
|
477 |
+
attn = attn + 1e-4 * torch.rand_like(attn)
|
478 |
+
attn /= attn.sum(2, keepdims=True)
|
479 |
+
#print(attn)
|
480 |
+
prior_means = torch.matmul(attn, prior_means) # try attn to contain .5/.5 instead of 1/0 so it smoothly interpolates repeated prior_means
|
481 |
+
|
482 |
+
#prior_means = F.interpolate(prior_means.transpose(1,2), int(1.74 * prior_means.shape[1]), mode='linear').transpose(1,2) # extend for slow speed
|
483 |
+
|
484 |
+
|
485 |
+
|
486 |
+
# prior means have now been replicated x duration of each prior mean
|
487 |
+
|
488 |
+
latents = self.flow(prior_means.transpose(1, 2), # + torch.randn_like(prior_means) * .94,
|
489 |
+
reverse=True)
|
490 |
+
|
491 |
+
waveform = self.decoder(latents) # [bs, 1, 16000]
|
492 |
+
|
493 |
+
return waveform[:, 0, :]
|
494 |
+
|
495 |
+
|
496 |
+
class VitsTokenizer(PreTrainedTokenizer):
|
497 |
+
vocab_files_names = {"vocab_file": "vocab.json"}
|
498 |
+
model_input_names = ["input_ids", "attention_mask"]
|
499 |
+
|
500 |
+
def __init__(
|
501 |
+
self,
|
502 |
+
vocab_file,
|
503 |
+
pad_token="<pad>",
|
504 |
+
unk_token="<unk>",
|
505 |
+
language=None,
|
506 |
+
add_blank=True,
|
507 |
+
normalize=True,
|
508 |
+
phonemize=True,
|
509 |
+
is_uroman=False,
|
510 |
+
**kwargs,
|
511 |
+
):
|
512 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
513 |
+
self.encoder = json.load(vocab_handle)
|
514 |
+
|
515 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
516 |
+
self.language = language
|
517 |
+
self.add_blank = add_blank
|
518 |
+
self.normalize = normalize
|
519 |
+
self.phonemize = phonemize
|
520 |
+
|
521 |
+
self.is_uroman = is_uroman
|
522 |
+
|
523 |
+
super().__init__(
|
524 |
+
pad_token=pad_token,
|
525 |
+
unk_token=unk_token,
|
526 |
+
language=language,
|
527 |
+
add_blank=add_blank,
|
528 |
+
normalize=normalize,
|
529 |
+
phonemize=phonemize,
|
530 |
+
is_uroman=is_uroman,
|
531 |
+
**kwargs,
|
532 |
+
)
|
533 |
+
|
534 |
+
@property
|
535 |
+
def vocab_size(self):
|
536 |
+
return len(self.encoder)
|
537 |
+
|
538 |
+
def get_vocab(self):
|
539 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
540 |
+
vocab.update(self.added_tokens_encoder)
|
541 |
+
return vocab
|
542 |
+
|
543 |
+
def normalize_text(self, input_string):
|
544 |
+
"""Lowercase the input string, respecting any special token ids that may be part or entirely upper-cased."""
|
545 |
+
all_vocabulary = list(self.encoder.keys()) + list(self.added_tokens_encoder.keys())
|
546 |
+
filtered_text = ""
|
547 |
+
|
548 |
+
i = 0
|
549 |
+
while i < len(input_string):
|
550 |
+
found_match = False
|
551 |
+
for word in all_vocabulary:
|
552 |
+
if input_string[i : i + len(word)] == word:
|
553 |
+
filtered_text += word
|
554 |
+
i += len(word)
|
555 |
+
found_match = True
|
556 |
+
break
|
557 |
+
|
558 |
+
if not found_match:
|
559 |
+
filtered_text += input_string[i].lower()
|
560 |
+
i += 1
|
561 |
+
|
562 |
+
return filtered_text
|
563 |
+
|
564 |
+
def _preprocess_char(self, text):
|
565 |
+
"""Special treatment of characters in certain languages"""
|
566 |
+
if self.language == "ron":
|
567 |
+
text = text.replace("ț", "ţ")
|
568 |
+
return text
|
569 |
+
|
570 |
+
def prepare_for_tokenization(
|
571 |
+
self, text: str, is_split_into_words: bool = False, normalize = None, **kwargs):
|
572 |
+
|
573 |
+
normalize = normalize if normalize is not None else self.normalize
|
574 |
+
|
575 |
+
if normalize:
|
576 |
+
# normalise for casing
|
577 |
+
text = self.normalize_text(text)
|
578 |
+
|
579 |
+
filtered_text = self._preprocess_char(text)
|
580 |
+
|
581 |
+
if has_non_roman_characters(filtered_text) and self.is_uroman:
|
582 |
+
# 7 langs - For now replace all to romans in app.py
|
583 |
+
raise ValueError
|
584 |
+
|
585 |
+
if self.phonemize:
|
586 |
+
if not is_phonemizer_available():
|
587 |
+
raise ImportError("Please install the `phonemizer` Python package to use this tokenizer.")
|
588 |
+
|
589 |
+
filtered_text = phonemizer.phonemize(
|
590 |
+
filtered_text,
|
591 |
+
language="en-us",
|
592 |
+
backend="espeak",
|
593 |
+
strip=True,
|
594 |
+
preserve_punctuation=True,
|
595 |
+
with_stress=True,
|
596 |
+
)
|
597 |
+
filtered_text = re.sub(r"\s+", " ", filtered_text)
|
598 |
+
elif normalize:
|
599 |
+
# strip any chars outside of the vocab (punctuation)
|
600 |
+
filtered_text = "".join(list(filter(lambda char: char in self.encoder, filtered_text))).strip()
|
601 |
+
|
602 |
+
return filtered_text, kwargs
|
603 |
+
|
604 |
+
def _tokenize(self, text):
|
605 |
+
"""Tokenize a string by inserting the `<pad>` token at the boundary between adjacent characters."""
|
606 |
+
tokens = list(text)
|
607 |
+
|
608 |
+
if self.add_blank:
|
609 |
+
# sounds dyslexi if no space between letters
|
610 |
+
# sounds disconnected if >2 spaces between letters
|
611 |
+
interspersed = [self._convert_id_to_token(0)] * (len(tokens) * 2) # + 1) # +1 rises slice index error if tokens odd
|
612 |
+
interspersed[::2] = tokens
|
613 |
+
tokens = interspersed + [self._convert_id_to_token(0)] # append one last space (it has indexing error ::2 mismatch if tokens is odd)
|
614 |
+
|
615 |
+
return tokens
|
616 |
+
|
617 |
+
def _convert_token_to_id(self, token):
|
618 |
+
"""Converts a token (str) in an id using the vocab."""
|
619 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
620 |
+
|
621 |
+
def _convert_id_to_token(self, index):
|
622 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
623 |
+
return self.decoder.get(index)
|