Update app.py
Browse files
app.py
CHANGED
@@ -1,20 +1,147 @@
|
|
1 |
import streamlit as st
|
2 |
-
|
|
|
3 |
|
4 |
-
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
st.title("Sentiment Analysis with HuggingFace Spaces")
|
8 |
-
st.write("Enter a sentence to analyze its sentiment:")
|
9 |
|
10 |
-
user_input = st.text_input("")
|
11 |
-
if user_input:
|
12 |
-
result = sentiment_pipeline(user_input)
|
13 |
-
sentiment = result[0]["label"]
|
14 |
-
confidence = result[0]["score"]
|
15 |
|
16 |
-
st.write(f"Sentiment: {sentiment}")
|
17 |
-
st.write(f"Confidence: {confidence:.2f}")
|
18 |
|
19 |
-
if __name__ == "__main__":
|
20 |
-
main()
|
|
|
1 |
import streamlit as st
|
2 |
+
import pdfplumber, re
|
3 |
+
from transformers import pipeline, AutoTokenizer
|
4 |
|
5 |
+
# βββββββββββββββββ Cached pipelines ββββββββββββββββββββββββββββββββββββ
|
6 |
+
@st.cache_resource(ttl=86400)
|
7 |
+
def load_pipes():
|
8 |
+
summarizer = pipeline("summarization", model=SUMM_MODEL)
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained( SUMM_MODEL)
|
10 |
+
sentiment = pipeline("text-classification", model=SENT_MODEL)
|
11 |
+
ner = pipeline("token-classification", model=NER_MODEL,
|
12 |
+
aggregation_strategy="simple")
|
13 |
+
return summarizer, tokenizer, sentiment, ner
|
14 |
+
|
15 |
+
# βββββββββββββββββ Helper functions ββββββββββββββββββββββββββββββββββββ
|
16 |
+
def split_by_tokens(text, max_tokens):
|
17 |
+
words = re.split(r"(\s+)", text)
|
18 |
+
buf, n = "", 0
|
19 |
+
for w in words:
|
20 |
+
ln = len(TOK(w).input_ids)
|
21 |
+
if n + ln <= max_tokens:
|
22 |
+
buf, n = buf + w, n + ln
|
23 |
+
else:
|
24 |
+
yield buf.strip(); buf, n = w, ln
|
25 |
+
if buf.strip(): yield buf.strip()
|
26 |
+
|
27 |
+
def summarise(text):
|
28 |
+
parts = list(split_by_tokens(text, MAX_TOK))
|
29 |
+
per_len = max(25, min(80, TARGET_WORDS // max(1, len(parts))))
|
30 |
+
first = [SUMMAR(p, max_length=per_len,
|
31 |
+
min_length=per_len//2,
|
32 |
+
do_sample=False)[0]["summary_text"]
|
33 |
+
for p in parts]
|
34 |
+
joined = " ".join(first)
|
35 |
+
if len(joined.split()) > TARGET_WORDS:
|
36 |
+
joined = SUMMAR(joined, max_length=TARGET_WORDS,
|
37 |
+
min_length=TARGET_WORDS//2,
|
38 |
+
do_sample=False)[0]["summary_text"]
|
39 |
+
return joined
|
40 |
+
|
41 |
+
def shorten(summary, n):
|
42 |
+
s = summary.split(". ")
|
43 |
+
return (". ".join(s[:n]).rstrip(".") + ".") if len(s) > n else summary
|
44 |
+
|
45 |
+
def extract_pdf(file):
|
46 |
+
txt=""
|
47 |
+
with pdfplumber.open(file) as pdf:
|
48 |
+
for p in pdf.pages: txt += p.extract_text() or ""
|
49 |
+
return txt
|
50 |
+
|
51 |
+
def tag_entities(text):
|
52 |
+
tt = {"Organization":[], "Person":[], "Location":[], "Miscellaneous":[]}
|
53 |
+
for e in NER(text):
|
54 |
+
grp = {"ORG":"Organization","PER":"Person",
|
55 |
+
"LOC":"Location"}.get(e["entity_group"],"Miscellaneous")
|
56 |
+
tt[grp].append(e["word"])
|
57 |
+
return {k: sorted(set(v)) for k,v in tt.items() if v}
|
58 |
+
|
59 |
+
# βββββββββββββββββ Main Part βββββββββββββββββββββββββββββββββββββββ
|
60 |
+
st.set_page_config(page_title="Financial News Analyzer",
|
61 |
+
page_icon="π°",
|
62 |
+
layout="wide")
|
63 |
+
st.title("π° Financial News Analyzer")
|
64 |
+
st.markdown("##### Instantly grasp news content, sentiment, and relevant entities")
|
65 |
+
|
66 |
+
# models and other constant variables
|
67 |
+
SUMM_MODEL = "sshleifer/distilbart-cnn-12-6"
|
68 |
+
SENT_MODEL = "nynn/Fintuned_Sentiment"
|
69 |
+
NER_MODEL = "Babelscape/wikineural-multilingual-ner"
|
70 |
+
SUMMAR, TOK, SENT_CLF, NER = load_pipes()
|
71 |
+
|
72 |
+
MAX_TOK = 1024
|
73 |
+
TARGET_WORDS = 225
|
74 |
+
LABEL_MAP = {"LABEL_0":"Negative","LABEL_1":"Positive","LABEL_2":"Neutral"}
|
75 |
+
COLOR_MAP = {"Positive":"green","Negative":"red","Neutral":"gray"}
|
76 |
+
|
77 |
+
# βββββββββββββββββ Sidebar input βββββββββββββββββββββββββββββββββββββββ
|
78 |
+
with st.sidebar:
|
79 |
+
st.header("Input News to Analyze:")
|
80 |
+
txt_input = st.text_area("Paste news article", height=150)
|
81 |
+
pdf_file = st.file_uploader("Or upload PDF", type=["pdf"])
|
82 |
+
sent_count = st.slider("Summary length (sentences)",
|
83 |
+
min_value=1, max_value=5, value=3, step=1)
|
84 |
+
run_btn = st.button("π Analyze", use_container_width=True)
|
85 |
+
|
86 |
+
raw_text = extract_pdf(pdf_file) if pdf_file else txt_input.strip()
|
87 |
+
|
88 |
+
# βββββββββββββββββ Main pipeline βββββββββββββββββββββββββββββββββββββββ
|
89 |
+
if run_btn:
|
90 |
+
if not raw_text:
|
91 |
+
st.warning("Please provide text or a PDF first.")
|
92 |
+
st.stop()
|
93 |
+
|
94 |
+
with st.spinner("Analyzing"):
|
95 |
+
full_sum = summarise(raw_text)
|
96 |
+
summary = shorten(full_sum, sent_count)
|
97 |
+
|
98 |
+
cols = st.columns([2,1])
|
99 |
+
with cols[0]:
|
100 |
+
st.subheader("π Summary")
|
101 |
+
st.write(summary)
|
102 |
+
|
103 |
+
with cols[1]:
|
104 |
+
res = SENT_CLF(summary)[0]
|
105 |
+
label = LABEL_MAP.get(res["label"], res["label"])
|
106 |
+
colour= COLOR_MAP[label]
|
107 |
+
st.subheader("π Sentiment")
|
108 |
+
st.markdown(f"<h3 style='color:{colour};margin-bottom:0'>{label}</h3>"
|
109 |
+
f"{res['score']*100:.1f}% Confidence</p>",
|
110 |
+
unsafe_allow_html=True)
|
111 |
+
|
112 |
+
tags = tag_entities(summary)
|
113 |
+
st.subheader("π·οΈ Relevant Tags")
|
114 |
+
|
115 |
+
if tags:
|
116 |
+
# CSS for the badge pills
|
117 |
+
pill_css = """
|
118 |
+
<style>
|
119 |
+
.tag-pill {
|
120 |
+
display: inline-block;
|
121 |
+
background: #f0f2f6;
|
122 |
+
color: #333;
|
123 |
+
padding: 4px 10px;
|
124 |
+
margin: 2px 4px 2px 0;
|
125 |
+
border-radius: 12px;
|
126 |
+
font-size: 0.9em;
|
127 |
+
}
|
128 |
+
.tag-cat {
|
129 |
+
font-weight: 600;
|
130 |
+
margin-top: 0;
|
131 |
+
margin-bottom: 4px;
|
132 |
+
}
|
133 |
+
</style>
|
134 |
+
"""
|
135 |
+
st.markdown(pill_css, unsafe_allow_html=True)
|
136 |
+
|
137 |
+
# Render each category as a header + pills
|
138 |
+
for category, vals in tags.items():
|
139 |
+
st.markdown(f"<div class='tag-cat'>{category}</div>", unsafe_allow_html=True)
|
140 |
+
pills = "".join(f"<span class='tag-pill'>{v}</span>" for v in vals)
|
141 |
+
st.markdown(pills, unsafe_allow_html=True)
|
142 |
+
else:
|
143 |
+
st.info("No entities detected.")
|
144 |
|
|
|
|
|
145 |
|
|
|
|
|
|
|
|
|
|
|
146 |
|
|
|
|
|
147 |
|
|
|
|