Delete json_leaderboard.py
Browse files- json_leaderboard.py +0 -121
json_leaderboard.py
DELETED
@@ -1,121 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
import pandas as pd
|
3 |
-
from pathlib import Path
|
4 |
-
|
5 |
-
|
6 |
-
def load_leaderboard_from_json(json_path="leaderboard_data.json"):
|
7 |
-
"""Load leaderboard data from JSON file"""
|
8 |
-
try:
|
9 |
-
with open(json_path, 'r', encoding='utf-8') as f:
|
10 |
-
data = json.load(f)
|
11 |
-
return data['leaderboard']
|
12 |
-
except FileNotFoundError:
|
13 |
-
print(f"JSON file {json_path} not found")
|
14 |
-
return []
|
15 |
-
except json.JSONDecodeError:
|
16 |
-
print(f"Error decoding JSON file {json_path}")
|
17 |
-
return []
|
18 |
-
|
19 |
-
|
20 |
-
def create_leaderboard_df(json_path="leaderboard_data.json"):
|
21 |
-
"""Create a pandas DataFrame from JSON leaderboard data"""
|
22 |
-
leaderboard_data = load_leaderboard_from_json(json_path)
|
23 |
-
|
24 |
-
if not leaderboard_data:
|
25 |
-
return pd.DataFrame()
|
26 |
-
|
27 |
-
# Convert to DataFrame
|
28 |
-
df = pd.DataFrame(leaderboard_data)
|
29 |
-
|
30 |
-
# Sort by ACC score (descending)
|
31 |
-
df = df.sort_values('Overall', ascending=False).reset_index(drop=True)
|
32 |
-
|
33 |
-
# Add ranking icons and make model names clickable links to papers
|
34 |
-
def add_ranking_icon_and_link(index, model_name, paper_link):
|
35 |
-
if index == 0:
|
36 |
-
return f'π₯ <a href="{paper_link}" target="_blank">{model_name}</a>'
|
37 |
-
elif index == 1:
|
38 |
-
return f'π₯ <a href="{paper_link}" target="_blank">{model_name}</a>'
|
39 |
-
elif index == 2:
|
40 |
-
return f'π₯ <a href="{paper_link}" target="_blank">{model_name}</a>'
|
41 |
-
else:
|
42 |
-
return f'<a href="{paper_link}" target="_blank">{model_name}</a>'
|
43 |
-
|
44 |
-
# Format the DataFrame for display
|
45 |
-
display_df = pd.DataFrame({
|
46 |
-
'Model': [add_ranking_icon_and_link(i, model, link) for i, (model, link) in enumerate(zip(df['model'], df['link']))],
|
47 |
-
'Release Date': df['release_date'],
|
48 |
-
'HF Model': df['hf'].apply(lambda x: f'<a href="{x}" target="_blank">π€</a>' if x != "-" else "-"),
|
49 |
-
'Open Source': df['open_source'].apply(lambda x: 'β' if x else 'β'),
|
50 |
-
|
51 |
-
'Overall': df['Overall'].apply(lambda x: f"{x:.2f}"),
|
52 |
-
|
53 |
-
'Style': df['Style'].apply(lambda x: f"{x:.2f}"),
|
54 |
-
|
55 |
-
'World Knowledge': df['World Knowledge'].apply(lambda x: f"{x:.2f}"),
|
56 |
-
'Logical Reasoning': df['Logical Reasoning'].apply(lambda x: f"{x:.2f}"),
|
57 |
-
|
58 |
-
|
59 |
-
'Text': df['Text'].apply(lambda x: f"{x:.2f}"),
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
'Attribute-Overall': df['Attribute-Overall'].apply(lambda x: f"{x:.2f}"),
|
64 |
-
'Quantity': df['Quantity'].apply(lambda x: f"{x:.2f}"),
|
65 |
-
'Expression': df['Expression'].apply(lambda x: f"{x:.2f}"),
|
66 |
-
'Material': df['Material'].apply(lambda x: f"{x:.2f}"),
|
67 |
-
'Size': df['Size'].apply(lambda x: f"{x:.2f}"),
|
68 |
-
'Shape': df['Shape'].apply(lambda x: f"{x:.2f}"),
|
69 |
-
'Color': df['Color'].apply(lambda x: f"{x:.2f}"),
|
70 |
-
|
71 |
-
'Action-Overall': df['Action-Overall'].apply(lambda x: f"{x:.2f}"),
|
72 |
-
'Hand': df['Hand'].apply(lambda x: f"{x:.2f}"),
|
73 |
-
'Full body': df['Full body'].apply(lambda x: f"{x:.2f}"),
|
74 |
-
'Animal': df['Animal'].apply(lambda x: f"{x:.2f}"),
|
75 |
-
'Non Contact': df['Non Contact'].apply(lambda x: f"{x:.2f}"),
|
76 |
-
'Contact': df['Contact'].apply(lambda x: f"{x:.2f}"),
|
77 |
-
'State': df['State'].apply(lambda x: f"{x:.2f}"),
|
78 |
-
|
79 |
-
'Relationship-Overall': df['Relationship-Overall'].apply(lambda x: f"{x:.2f}"),
|
80 |
-
'Composition': df['Composition'].apply(lambda x: f"{x:.2f}"),
|
81 |
-
'Similarity': df['Similarity'].apply(lambda x: f"{x:.2f}"),
|
82 |
-
'Inclusion': df['Inclusion'].apply(lambda x: f"{x:.2f}"),
|
83 |
-
'Comparison': df['Comparison'].apply(lambda x: f"{x:.2f}"),
|
84 |
-
|
85 |
-
|
86 |
-
'Compound-Overall': df['Compound-Overall'].apply(lambda x: f"{x:.2f}"),
|
87 |
-
'Imagination': df['Imagination'].apply(lambda x: f"{x:.2f}"),
|
88 |
-
'Feature matching': df['Feature matching'].apply(lambda x: f"{x:.2f}"),
|
89 |
-
|
90 |
-
|
91 |
-
'Grammar-Overall': df['Grammar-Overall'].apply(lambda x: f"{x:.2f}"),
|
92 |
-
'Pronoun Reference': df['Pronoun Reference'].apply(lambda x: f"{x:.2f}"),
|
93 |
-
'Consistency': df['Consistency'].apply(lambda x: f"{x:.2f}"),
|
94 |
-
'Negation': df['Negation'].apply(lambda x: f"{x:.2f}"),
|
95 |
-
|
96 |
-
|
97 |
-
'Layout-Overall': df['Layout-Overall'].apply(lambda x: f"{x:.2f}"),
|
98 |
-
'2D': df['2D'].apply(lambda x: f"{x:.2f}"),
|
99 |
-
'3D': df['3D'].apply(lambda x: f"{x:.2f}"),
|
100 |
-
|
101 |
-
|
102 |
-
})
|
103 |
-
|
104 |
-
return display_df
|
105 |
-
|
106 |
-
|
107 |
-
def get_leaderboard_stats(json_path="leaderboard_data.json"):
|
108 |
-
"""Get statistics about the leaderboard"""
|
109 |
-
leaderboard_data = load_leaderboard_from_json(json_path)
|
110 |
-
|
111 |
-
if not leaderboard_data:
|
112 |
-
return {}
|
113 |
-
|
114 |
-
df = pd.DataFrame(leaderboard_data)
|
115 |
-
|
116 |
-
stats = {
|
117 |
-
'total_models': len(df),
|
118 |
-
'open_source_models': df['open_source'].sum(),
|
119 |
-
}
|
120 |
-
|
121 |
-
return stats
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|