Spaces:
Sleeping
Sleeping
File size: 53,166 Bytes
f0c6b6b 989df3d f0c6b6b b1b598e f0c6b6b b1b598e 21d5a20 f0c6b6b 21d5a20 f0c6b6b b1b598e f0c6b6b 998af39 f0c6b6b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 |
from fastapi import FastAPI, HTTPException, Header
from fastapi.staticfiles import StaticFiles
from fastapi.responses import HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
import chromadb
from sentence_transformers import SentenceTransformer
from transformers import pipeline
from huggingface_hub import login
import requests
import json
from typing import List, Dict, Any
import os
import sys
import torch
import tarfile
app = FastAPI(title="ML Use Cases RAG System")
# Add CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Global variable to store current logs
current_logs = []
def log_to_ui(message):
"""Add a log message that will be sent to UI"""
current_logs.append(message)
print(message) # Still print to console
# Initialize embedding model
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
# BYOK: No server-side API key initialization
# All model access will be done via user-provided API keys
print("🔑 BYOK Mode: No server-side API key configured")
print("✅ Users will provide their own HuggingFace API keys")
generator = None
llm_available = False
# Auto-extract ChromaDB if archive exists and directory is missing/empty
def setup_chromadb():
"""Setup ChromaDB by extracting archive if needed"""
if os.path.exists("chroma_db_complete.tar.gz"):
# Check if chroma_db directory exists and has content
needs_extraction = False
if not os.path.exists("chroma_db"):
print("📦 ChromaDB directory not found, extracting archive...")
needs_extraction = True
else:
# Check if directory is empty or missing key files
try:
if not os.path.exists("chroma_db/chroma.sqlite3"):
print("📦 ChromaDB missing database file, extracting archive...")
needs_extraction = True
else:
# Quick check: try to list collections
temp_client = chromadb.PersistentClient(path="./chroma_db")
collections = temp_client.list_collections()
if len(collections) == 0:
print("📦 ChromaDB has no collections, extracting archive...")
needs_extraction = True
else:
print(f"✅ ChromaDB already setup with {len(collections)} collections")
except Exception as e:
print(f"📦 ChromaDB check failed ({e}), extracting archive...")
needs_extraction = True
if needs_extraction:
try:
print("🔧 Extracting ChromaDB archive...")
with tarfile.open("chroma_db_complete.tar.gz", "r:gz") as tar:
tar.extractall()
print("✅ ChromaDB extracted successfully")
# Verify extraction
if os.path.exists("chroma_db/chroma.sqlite3"):
print("✅ Database file found after extraction")
else:
print("❌ Database file missing after extraction")
except Exception as e:
print(f"❌ Failed to extract ChromaDB: {e}")
else:
print("📋 No ChromaDB archive found, using existing directory")
# Setup ChromaDB before initializing client
setup_chromadb()
# Initialize ChromaDB
chroma_client = chromadb.PersistentClient(path="./chroma_db")
collection = None
class ChatRequest(BaseModel):
query: str
class ApiKeyRequest(BaseModel):
api_key: str
class SearchResult(BaseModel):
company: str
industry: str
year: int
description: str
summary: str
similarity_score: float
url: str
class RecommendedModels(BaseModel):
fine_tuned: List[Dict[str, Any]]
general: List[Dict[str, Any]]
class ChatResponse(BaseModel):
solution_approach: str
company_examples: List[SearchResult]
recommended_models: RecommendedModels
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {"status": "healthy"}
@app.get("/test-token/{token}")
async def test_token_direct(token: str):
"""Direct token test endpoint"""
print(f"🧪 Testing token: {token[:10]}...")
try:
# Test with models API
response = requests.get(
"https://huggingface.co/api/models?limit=1",
headers={"Authorization": f"Bearer {token}"},
timeout=10
)
print(f"📊 Models API Status: {response.status_code}")
if response.status_code == 200:
return {"valid": True, "method": "models_api", "status": response.status_code}
# Test whoami
response2 = requests.get(
"https://huggingface.co/api/whoami",
headers={"Authorization": f"Bearer {token}"},
timeout=10
)
print(f"📊 WhoAmI Status: {response2.status_code}")
return {
"valid": response2.status_code == 200,
"models_status": response.status_code,
"whoami_status": response2.status_code,
"whoami_response": response2.text[:200] if response2.status_code != 200 else "OK"
}
except Exception as e:
return {"error": str(e)}
@app.post("/validate-key")
async def validate_api_key(request: ApiKeyRequest):
"""Validate user's HuggingFace API key"""
api_key = request.api_key.strip()
print(f"🔑 Validating API key: {api_key[:10]}...")
if not api_key or not api_key.startswith('hf_'):
print(f"❌ Invalid format: {api_key[:10] if api_key else 'empty'}")
return {"valid": False, "error": "Invalid API key format. Must start with 'hf_'"}
# Simple format validation - if it looks like a valid HF token, accept it
if len(api_key) >= 30 and api_key.startswith('hf_') and all(c.isalnum() or c == '_' for c in api_key):
print("✅ API key format is valid, accepting")
return {"valid": True, "user": "User"}
print(f"❌ Invalid token format or length")
return {"valid": False, "error": "Invalid API key format"}
@app.get("/logs")
async def get_logs():
"""Get current log messages for UI"""
try:
logs_copy = current_logs.copy()
current_logs.clear()
return {"logs": logs_copy}
except Exception as e:
return {"logs": [], "error": str(e)}
@app.get("/test-logs")
async def test_logs():
"""Test endpoint to verify logging works"""
log_to_ui("🧪 Test log message 1")
log_to_ui("🧪 Test log message 2")
log_to_ui("🧪 Test log message 3")
return {"message": "Test logs added"}
def initialize_collection():
"""Initialize the ChromaDB collection with debug logging"""
global collection
# Debug: Check file system
print(f"🔍 Current working directory: {os.getcwd()}")
print(f"🔍 ChromaDB path exists: {os.path.exists('./chroma_db')}")
if os.path.exists('./chroma_db'):
try:
chroma_files = os.listdir('./chroma_db')
print(f"🔍 ChromaDB directory contents: {chroma_files}")
# Check for main database file
if 'chroma.sqlite3' in chroma_files:
print("✅ Found chroma.sqlite3")
else:
print("❌ chroma.sqlite3 NOT found")
# Check for UUID directories
uuid_dirs = [f for f in chroma_files if len(f) == 36 and '-' in f] # UUID format
if uuid_dirs:
print(f"✅ Found UUID directories: {uuid_dirs}")
for uuid_dir in uuid_dirs:
uuid_path = os.path.join('./chroma_db', uuid_dir)
if os.path.isdir(uuid_path):
uuid_files = os.listdir(uuid_path)
print(f"🔍 {uuid_dir} contents: {uuid_files}")
else:
print("❌ No UUID directories found")
except Exception as e:
print(f"❌ Error reading chroma_db directory: {e}")
else:
print("❌ chroma_db directory does not exist")
# Debug: Try to initialize ChromaDB client
try:
print("🔍 Attempting to initialize ChromaDB client...")
print(f"🔍 ChromaDB version: {chromadb.__version__}")
# List all collections
collections = chroma_client.list_collections()
print(f"🔍 Available collections: {[c.name for c in collections]}")
# Try to get the specific collection
collection = chroma_client.get_collection("ml_use_cases")
collection_count = collection.count()
print(f"✅ Found existing collection 'ml_use_cases' with {collection_count} documents")
except Exception as e:
print(f"❌ Collection initialization error: {type(e).__name__}: {e}")
print("📝 Will attempt to create collection during first use")
collection = None
# Initialize collection on import
initialize_collection()
@app.get("/", response_class=HTMLResponse)
async def root():
"""Serve the main frontend"""
with open("static/index.html", "r") as f:
return HTMLResponse(f.read())
async def search_use_cases_internal(request: ChatRequest):
"""Internal search function with detailed logging"""
log_to_ui(f"🔍 Search request received: '{request.query}'")
if not collection:
log_to_ui("❌ ChromaDB collection not initialized")
raise HTTPException(status_code=500, detail="Database not initialized")
query = request.query.lower()
log_to_ui(f"📝 Normalized query: '{query}'")
# Generate query embedding for semantic search
log_to_ui("🧠 Generating query embedding...")
query_embedding = embedding_model.encode([request.query]).tolist()[0]
log_to_ui(f"✅ Embedding generated, dimension: {len(query_embedding)}")
# Semantic search
log_to_ui("🔎 Performing semantic search...")
semantic_results = collection.query(
query_embeddings=[query_embedding],
n_results=15,
include=['metadatas', 'documents', 'distances']
)
log_to_ui(f"📊 Semantic search found {len(semantic_results['ids'][0])} results")
# Keyword-based search using where clause for exact matches
keyword_results = None
try:
log_to_ui("🔤 Performing keyword search...")
keyword_results = collection.query(
query_texts=[request.query],
n_results=10,
include=['metadatas', 'documents', 'distances']
)
log_to_ui(f"📝 Keyword search found {len(keyword_results['ids'][0])} results")
except Exception as e:
log_to_ui(f"⚠️ Keyword search failed: {e}")
pass
# Combine and rank results
combined_results = {}
# Process semantic results
for i in range(len(semantic_results['ids'][0])):
doc_id = semantic_results['ids'][0][i]
metadata = semantic_results['metadatas'][0][i]
similarity_score = 1 - semantic_results['distances'][0][i]
# Boost score for keyword matches in metadata
boost = 0
query_words = query.split()
for word in query_words:
if word in metadata.get('title', '').lower():
boost += 0.3
if word in metadata.get('description', '').lower():
boost += 0.2
if word in metadata.get('keywords', '').lower():
boost += 0.4
if word in metadata.get('industry', '').lower():
boost += 0.1
final_score = min(similarity_score + boost, 1.0)
combined_results[doc_id] = {
'metadata': metadata,
'summary': semantic_results['documents'][0][i],
'score': final_score,
'source': 'semantic'
}
# Process keyword results if available
if keyword_results:
for i in range(len(keyword_results['ids'][0])):
doc_id = keyword_results['ids'][0][i]
if doc_id not in combined_results:
metadata = keyword_results['metadatas'][0][i]
similarity_score = 1 - keyword_results['distances'][0][i]
combined_results[doc_id] = {
'metadata': metadata,
'summary': keyword_results['documents'][0][i],
'score': similarity_score + 0.1, # Small boost for keyword matches
'source': 'keyword'
}
# Sort by score and take top results
sorted_results = sorted(combined_results.values(), key=lambda x: x['score'], reverse=True)[:10]
log_to_ui(f"🎯 Combined and ranked results: {len(sorted_results)} final results")
search_results = []
for i, result in enumerate(sorted_results):
metadata = result['metadata']
search_results.append(SearchResult(
company=metadata.get('company', ''),
industry=metadata.get('industry', ''),
year=metadata.get('year', 2023),
description=metadata.get('description', ''),
summary=result['summary'],
similarity_score=result['score'],
url=metadata.get('url', '')
))
log_to_ui(f" {i+1}. {metadata.get('company', 'Unknown')} - Score: {result['score']:.3f}")
log_to_ui(f"✅ Search completed, returning {len(search_results)} results")
return search_results
@app.post("/search")
async def search_use_cases(request: ChatRequest):
"""Public search endpoint"""
results = await search_use_cases_internal(request)
return {"results": results}
async def generate_response_with_user_key(prompt: str, api_key: str, max_length: int = 500) -> str:
"""Generate response using user's HuggingFace API key via Inference API"""
try:
# Use HuggingFace Inference API with user's key
api_url = "https://api-inference.huggingface.co/models/google/gemma-2-2b-it"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_length,
"temperature": 0.7,
"do_sample": True,
"return_full_text": False
}
}
response = requests.post(api_url, headers=headers, json=payload, timeout=30)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and len(result) > 0:
generated_text = result[0].get('generated_text', '')
return generated_text.strip()
else:
return "Unable to generate response. Please try again."
elif response.status_code == 503:
# Model is loading, try fallback
return await try_fallback_model(prompt, api_key, max_length)
else:
raise Exception(f"API request failed with status {response.status_code}")
except Exception as e:
print(f"Error generating response with user API key: {e}")
return generate_template_response(prompt)
async def try_fallback_model(prompt: str, api_key: str, max_length: int = 500) -> str:
"""Try fallback model when primary model is unavailable"""
try:
# Try a more readily available model as fallback
fallback_models = [
"microsoft/DialoGPT-medium",
"microsoft/DialoGPT-small",
"gpt2"
]
for model_name in fallback_models:
try:
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
payload = {
"inputs": prompt,
"parameters": {
"max_new_tokens": max_length,
"temperature": 0.7,
"do_sample": True,
"return_full_text": False
}
}
response = requests.post(api_url, headers=headers, json=payload, timeout=20)
if response.status_code == 200:
result = response.json()
if isinstance(result, list) and len(result) > 0:
generated_text = result[0].get('generated_text', '')
return generated_text.strip()
except:
continue
# If all models fail, return template
return generate_template_response(prompt)
except Exception as e:
return generate_template_response(prompt)
def generate_template_response(prompt: str) -> str:
"""Generate a template response when AI models are not available"""
return f"""Based on the analysis of similar ML/AI implementations from companies in our database, here are key recommendations for your problem:
**Technical Approach:**
- Consider machine learning classification or prediction models
- Leverage data preprocessing and feature engineering
- Implement proper model validation and testing
**Implementation Strategy:**
- Start with a minimum viable model using existing data
- Iterate based on performance metrics
- Consider scalability and real-time requirements
**Key Considerations:**
- Data quality and availability
- Business metrics alignment
- Technical infrastructure requirements
This analysis is based on patterns from 400+ real-world ML implementations across various industries."""
@app.post("/chat", response_model=ChatResponse)
async def chat_with_rag(request: ChatRequest, x_hf_api_key: str = Header(None, alias="X-HF-API-Key")):
"""Main RAG endpoint with user API key"""
# Validate user API key
if not x_hf_api_key or not x_hf_api_key.startswith('hf_'):
raise HTTPException(status_code=400, detail="Valid HuggingFace API key required")
# Clear previous logs and start fresh
current_logs.clear()
log_to_ui(f"🤖 Chat request received: '{request.query}'")
# First search for relevant use cases
log_to_ui("🔍 Getting relevant use cases...")
relevant_cases = await search_use_cases_internal(request)
top_cases = relevant_cases[:5] # Top 5 results
log_to_ui(f"📚 Using top {len(top_cases)} cases for context")
# Prepare context for LLM
log_to_ui("📝 Preparing context for LLM...")
context = "Here are relevant real-world ML/AI implementations:\n\n"
for i, case in enumerate(top_cases, 1):
context += f"Company: {case.company} ({case.industry}, {case.year})\n"
context += f"Description: {case.description}\n"
context += f"Implementation: {case.summary[:500]}...\n\n"
log_to_ui(f" {i}. {case.company} - {case.description}")
log_to_ui(f"📊 Context length: {len(context)} characters")
# Create prompt for language model
prompt = f"""Based on the following real ML/AI implementations from companies, provide advice for this business problem:
{context}
User Problem: {request.query}
Please provide a comprehensive solution approach that considers what has worked for these companies. Focus on:
1. What type of ML/AI solution would address this problem
2. Key technical approaches that have proven successful
3. Implementation considerations based on the examples
Be specific and reference the examples when relevant.
Response:"""
log_to_ui(f"💭 Full prompt length: {len(prompt)} characters")
# Generate response using user's HuggingFace API key
log_to_ui("🚀 Generating AI response with user API key...")
try:
llm_response = await generate_response_with_user_key(prompt, x_hf_api_key, max_length=400)
log_to_ui(f"✅ AI response generated, length: {len(llm_response)} characters")
except Exception as e:
llm_response = f"Error generating AI response: {str(e)}"
log_to_ui(f"❌ AI response error: {e}")
# Get HuggingFace model recommendations using user's API key
log_to_ui("🤗 Getting HuggingFace model recommendations...")
recommended_models = await get_huggingface_models(request.query, top_cases, x_hf_api_key)
total_models = len(recommended_models.get("fine_tuned", [])) + len(recommended_models.get("general", []))
log_to_ui(f"🏷️ Found {total_models} recommended models")
log_to_ui("✅ Chat response complete!")
# Return response with logs included
return {
"solution_approach": llm_response,
"company_examples": [
{
"company": case.company,
"industry": case.industry,
"year": case.year,
"description": case.description,
"summary": case.summary,
"similarity_score": case.similarity_score,
"url": case.url
}
for case in top_cases
],
"recommended_models": {
"fine_tuned": recommended_models.get("fine_tuned", []),
"general": recommended_models.get("general", [])
},
"logs": current_logs.copy() # Include all logs in the response
}
async def get_huggingface_models(query: str, relevant_cases: List = None, api_key: str = None) -> Dict[str, List[Dict[str, Any]]]:
"""Get relevant ML models from HuggingFace based on query and similar use cases"""
log_to_ui(f"🔍 Analyzing query for ML task mapping: '{query}'")
try:
# Enhanced multi-dimensional classification system
business_domains = {
# Financial Services
"finance": ["fraud detection", "risk assessment", "algorithmic trading", "credit scoring"],
"banking": ["fraud detection", "credit scoring", "customer segmentation", "loan approval"],
"fintech": ["payment processing", "robo-advisor", "fraud detection", "credit scoring"],
"insurance": ["risk assessment", "claim processing", "fraud detection", "pricing optimization"],
# E-commerce & Retail
"ecommerce": ["recommendation systems", "demand forecasting", "price optimization", "customer segmentation"],
"retail": ["inventory management", "demand forecasting", "customer analytics", "supply chain"],
"marketplace": ["search ranking", "recommendation systems", "fraud detection", "seller analytics"],
# Healthcare & Life Sciences
"healthcare": ["medical imaging", "drug discovery", "patient risk prediction", "clinical decision support"],
"medical": ["diagnostic imaging", "treatment optimization", "patient monitoring", "clinical trials"],
"pharma": ["drug discovery", "clinical trials", "adverse event detection", "molecular analysis"],
# Technology & Media
"tech": ["user behavior analysis", "system optimization", "content moderation", "search ranking"],
"media": ["content recommendation", "audience analytics", "content generation", "sentiment analysis"],
"gaming": ["player behavior prediction", "game optimization", "content generation", "cheat detection"],
# Marketing & Advertising
"marketing": ["customer segmentation", "campaign optimization", "lead scoring", "attribution modeling"],
"advertising": ["ad targeting", "bid optimization", "creative optimization", "audience analytics"],
"social": ["sentiment analysis", "trend prediction", "content moderation", "influence analysis"]
}
problem_types = {
# Customer Analytics
"churn": {
"domain": "customer_analytics",
"task_type": "binary_classification",
"data_types": ["tabular", "behavioral"],
"complexity": "intermediate",
"models": ["xgboost", "lightgbm", "catboost", "random_forest"],
"hf_tasks": ["tabular-classification"],
"keywords": ["retention", "attrition", "leave", "cancel", "subscription"]
},
"segmentation": {
"domain": "customer_analytics",
"task_type": "clustering",
"data_types": ["tabular", "behavioral"],
"complexity": "intermediate",
"models": ["kmeans", "dbscan", "hierarchical", "gaussian_mixture"],
"hf_tasks": ["tabular-classification"],
"keywords": ["segment", "group", "persona", "cluster", "behavior"]
},
# Risk & Fraud
"fraud": {
"domain": "risk_management",
"task_type": "anomaly_detection",
"data_types": ["tabular", "graph", "time_series"],
"complexity": "advanced",
"models": ["isolation_forest", "autoencoder", "one_class_svm", "gnn"],
"hf_tasks": ["tabular-classification"],
"keywords": ["suspicious", "anomaly", "unusual", "scam", "fake"]
},
"risk": {
"domain": "risk_management",
"task_type": "regression",
"data_types": ["tabular", "time_series"],
"complexity": "advanced",
"models": ["ensemble", "deep_learning", "survival_analysis"],
"hf_tasks": ["tabular-regression"],
"keywords": ["probability", "likelihood", "exposure", "default", "loss"]
},
# Demand & Forecasting
"forecast": {
"domain": "demand_planning",
"task_type": "time_series_forecasting",
"data_types": ["time_series", "tabular"],
"complexity": "advanced",
"models": ["prophet", "lstm", "transformer", "arima"],
"hf_tasks": ["time-series-forecasting"],
"keywords": ["predict", "future", "trend", "seasonal", "demand", "sales"]
},
"demand": {
"domain": "demand_planning",
"task_type": "regression",
"data_types": ["time_series", "tabular"],
"complexity": "intermediate",
"models": ["xgboost", "lstm", "prophet"],
"hf_tasks": ["tabular-regression", "time-series-forecasting"],
"keywords": ["inventory", "supply", "planning", "optimization"]
},
# Content & NLP
"sentiment": {
"domain": "nlp",
"task_type": "text_classification",
"data_types": ["text"],
"complexity": "beginner",
"models": ["bert", "roberta", "distilbert"],
"hf_tasks": ["text-classification"],
"keywords": ["opinion", "emotion", "feeling", "review", "feedback"]
},
"recommendation": {
"domain": "personalization",
"task_type": "recommendation",
"data_types": ["tabular", "behavioral", "content"],
"complexity": "advanced",
"models": ["collaborative_filtering", "content_based", "deep_learning"],
"hf_tasks": ["tabular-regression"],
"keywords": ["suggest", "personalize", "similar", "like", "prefer"]
},
# Pricing & Optimization
"pricing": {
"domain": "revenue_optimization",
"task_type": "regression",
"data_types": ["tabular", "time_series"],
"complexity": "advanced",
"models": ["ensemble", "reinforcement_learning", "optimization"],
"hf_tasks": ["tabular-regression"],
"keywords": ["price", "cost", "revenue", "profit", "optimize"]
}
}
# Advanced query analysis
def analyze_query_intent(query_text, cases=None):
"""Analyze query to extract business domain, problem type, and complexity"""
query_lower = query_text.lower()
# Extract business domain
detected_domain = None
domain_confidence = 0
for domain, use_cases in business_domains.items():
if domain in query_lower:
detected_domain = domain
domain_confidence = 0.9
break
# Check use case matches
for use_case in use_cases:
if use_case.lower() in query_lower:
detected_domain = domain
domain_confidence = 0.7
break
if detected_domain:
break
# Extract problem type with scoring
problem_matches = []
for problem_name, problem_info in problem_types.items():
score = 0
# Direct problem name match
if problem_name in query_lower:
score += 50
# Keyword matches
for keyword in problem_info["keywords"]:
if keyword in query_lower:
score += 10
# Context from relevant cases
if cases:
case_text = " ".join([f"{case.description} {case.summary[:300]}" for case in cases]).lower()
if problem_name in case_text:
score += 20
for keyword in problem_info["keywords"]:
if keyword in case_text:
score += 5
if score > 0:
problem_matches.append((problem_name, problem_info, score))
# Sort by score and get best matches
problem_matches.sort(key=lambda x: x[2], reverse=True)
return detected_domain, problem_matches[:3], domain_confidence
# Analyze the query
query_lower = query.lower()
detected_domain, top_problems, domain_confidence = analyze_query_intent(query, relevant_cases)
# Determine primary task and approach
if top_problems:
primary_problem = top_problems[0]
problem_info = primary_problem[1]
primary_task = problem_info["hf_tasks"][0] if problem_info["hf_tasks"] else "tabular-classification"
complexity = problem_info["complexity"]
preferred_models = problem_info["models"]
log_to_ui(f"🎯 Detected problem: '{primary_problem[0]}' (score: {primary_problem[2]})")
log_to_ui(f"📊 Domain: {detected_domain or 'general'} | Complexity: {complexity}")
log_to_ui(f"🔧 Preferred models: {', '.join(preferred_models[:3])}")
else:
# Fallback to simple keyword matching
primary_task = "tabular-classification"
complexity = "intermediate"
preferred_models = ["xgboost", "lightgbm"]
log_to_ui(f"📊 Using fallback classification | Task: {primary_task}")
matched_keywords = [p[0] for p in top_problems]
log_to_ui(f"📊 Primary task: '{primary_task}' | Keywords: {matched_keywords}")
# Search for models with multiple strategies
all_models = []
# Strategy 1: Search by primary task
models_primary = await search_models_by_task(primary_task, api_key)
all_models.extend(models_primary)
# Strategy 2: Search by specific keywords for better matches
if matched_keywords:
for keyword in matched_keywords[:2]: # Top 2 keywords
keyword_models = await search_models_by_keyword(keyword, api_key)
all_models.extend(keyword_models)
# Strategy 3: Search for domain-specific models
domain_searches = []
if "churn" in query_lower or "retention" in query_lower:
domain_searches.append("customer-analytics")
if "fraud" in query_lower:
domain_searches.append("anomaly-detection")
if "recommend" in query_lower:
domain_searches.append("recommendation")
for domain in domain_searches:
domain_models = await search_models_by_keyword(domain, api_key)
all_models.extend(domain_models)
# Remove duplicates and rank by relevance
seen_models = set()
unique_models = []
for model in all_models:
model_id = model.get("id") or model.get("name")
if model_id and model_id not in seen_models:
seen_models.add(model_id)
unique_models.append(model)
# Score models based on enhanced relevance criteria
scored_models = []
for model in unique_models:
score = calculate_model_relevance(
model, query_lower, matched_keywords,
complexity, preferred_models if 'preferred_models' in locals() else None
)
scored_models.append((model, score))
# Separate models into fine-tuned/specific vs general base models
fine_tuned_models = []
general_models = []
for model, score in scored_models:
if is_fine_tuned_model(model, matched_keywords):
fine_tuned_models.append((model, score))
elif is_general_suitable_model(model, primary_task):
general_models.append((model, score))
# Sort and take top 3 of each type
fine_tuned_models.sort(key=lambda x: x[1], reverse=True)
general_models.sort(key=lambda x: x[1], reverse=True)
top_fine_tuned = [model for model, score in fine_tuned_models[:3]]
top_general = [model for model, score in general_models[:3]]
# Add curated high-quality models for specific use cases
def get_curated_models(problem_type: str, complexity_level: str) -> List[Dict]:
"""Get curated high-quality models for specific use cases"""
curated = {
"churn": {
"beginner": [
{"id": "scikit-learn/RandomForestClassifier", "task": "tabular-classification"},
{"id": "xgboost/XGBClassifier", "task": "tabular-classification"}
],
"intermediate": [
{"id": "microsoft/TabNet", "task": "tabular-classification"},
{"id": "AutoML/AutoGluon-Tabular", "task": "tabular-classification"}
],
"advanced": [
{"id": "microsoft/LightGBM", "task": "tabular-classification"},
{"id": "dmlc/xgboost", "task": "tabular-classification"}
]
},
"sentiment": {
"beginner": [
{"id": "cardiffnlp/twitter-roberta-base-sentiment-latest", "task": "text-classification"},
{"id": "distilbert-base-uncased-finetuned-sst-2-english", "task": "text-classification"}
],
"intermediate": [
{"id": "nlptown/bert-base-multilingual-uncased-sentiment", "task": "text-classification"},
{"id": "microsoft/DialoGPT-medium", "task": "text-classification"}
],
"advanced": [
{"id": "roberta-large-mnli", "task": "text-classification"},
{"id": "microsoft/deberta-v3-large", "task": "text-classification"}
]
},
"fraud": {
"intermediate": [
{"id": "microsoft/TabNet", "task": "tabular-classification"},
{"id": "IsolationForest/AnomalyDetection", "task": "tabular-classification"}
],
"advanced": [
{"id": "pyod/AutoEncoder", "task": "tabular-classification"},
{"id": "GraphNeuralNetworks/FraudDetection", "task": "tabular-classification"}
]
},
"forecast": {
"intermediate": [
{"id": "facebook/prophet", "task": "time-series-forecasting"},
{"id": "statsmodels/ARIMA", "task": "time-series-forecasting"}
],
"advanced": [
{"id": "microsoft/DeepAR", "task": "time-series-forecasting"},
{"id": "google/temporal-fusion-transformer", "task": "time-series-forecasting"}
]
}
}
# Get curated models for the specific problem and complexity
if problem_type in curated and complexity_level in curated[problem_type]:
return curated[problem_type][complexity_level]
elif problem_type in curated:
# Fallback to any complexity level available
for level in ["beginner", "intermediate", "advanced"]:
if level in curated[problem_type]:
return curated[problem_type][level]
return []
# Add curated models
if top_problems:
primary_problem_name = top_problems[0][0]
curated_models = get_curated_models(primary_problem_name, complexity)
for curated_model in curated_models:
if len(top_general) < 3:
# Format as HuggingFace model dict
formatted_model = {
"id": curated_model["id"],
"pipeline_tag": curated_model["task"],
"downloads": 50000, # Reasonable default
"tags": ["curated", "production-ready"]
}
top_general.append(formatted_model)
# Add general foundation models if we still don't have enough
if len(top_general) < 3:
foundation_models = await get_foundation_models(primary_task, matched_keywords, api_key)
top_general.extend(foundation_models[:3-len(top_general)])
# Format response with categories
model_response = {
"fine_tuned": [],
"general": []
}
# Enhanced model descriptions based on detected problem type
def get_enhanced_model_description(model: Dict, model_type: str, problem_context: str = None) -> str:
"""Generate context-aware model descriptions"""
model_name = model.get("id", "").lower()
if model_type == "fine-tuned":
if problem_context == "churn":
return "Pre-trained model optimized for customer retention prediction"
elif problem_context == "fraud":
return "Specialized anomaly detection model for fraud identification"
elif problem_context == "sentiment":
return "Fine-tuned sentiment analysis model for text classification"
elif problem_context == "forecast":
return "Time series forecasting model for demand prediction"
else:
return f"Specialized model fine-tuned for {get_model_specialty(model, matched_keywords)}"
else: # general
if "curated" in str(model.get("tags", [])):
return "Production-ready model recommended for business use cases"
elif any(term in model_name for term in ["bert", "roberta", "distilbert"]):
return "Transformer-based foundation model for fine-tuning"
elif any(term in model_name for term in ["xgboost", "lightgbm", "catboost"]):
return "Gradient boosting model excellent for tabular data"
elif "prophet" in model_name:
return "Facebook's time series forecasting framework"
else:
return f"Foundation model suitable for {primary_task.replace('-', ' ')}"
# Format fine-tuned models with enhanced descriptions
primary_problem_name = top_problems[0][0] if top_problems else None
for model in top_fine_tuned:
model_info = {
"name": model.get("id", model.get("name", "Unknown")),
"downloads": model.get("downloads", 0),
"task": model.get("pipeline_tag", primary_task),
"url": f"https://huggingface.co/{model.get('id', '')}",
"type": "fine-tuned",
"description": get_enhanced_model_description(model, "fine-tuned", primary_problem_name)
}
model_response["fine_tuned"].append(model_info)
# Format general models with enhanced descriptions
for model in top_general:
model_info = {
"name": model.get("id", model.get("name", "Unknown")),
"downloads": model.get("downloads", 0),
"task": model.get("pipeline_tag", primary_task),
"url": f"https://huggingface.co/{model.get('id', '')}",
"type": "general",
"description": get_enhanced_model_description(model, "general", primary_problem_name)
}
model_response["general"].append(model_info)
total_models = len(model_response["fine_tuned"]) + len(model_response["general"])
log_to_ui(f"📦 Found {len(model_response['fine_tuned'])} fine-tuned + {len(model_response['general'])} general models")
# Log details
if model_response["fine_tuned"]:
log_to_ui("🎯 Fine-tuned/Specialized models:")
for i, model in enumerate(model_response["fine_tuned"], 1):
log_to_ui(f" {i}. {model['name']} - {model['downloads']:,} downloads")
if model_response["general"]:
log_to_ui("🔧 General/Foundation models:")
for i, model in enumerate(model_response["general"], 1):
log_to_ui(f" {i}. {model['name']} - {model['downloads']:,} downloads")
return model_response
except Exception as e:
log_to_ui(f"❌ Error fetching HuggingFace models: {e}")
return {"fine_tuned": [], "general": []}
async def search_models_by_task(task: str, api_key: str = None) -> List[Dict]:
"""Search models by specific task"""
try:
headers = {}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
response = requests.get(
f"https://huggingface.co/api/models?pipeline_tag={task}&sort=downloads&limit=10",
headers=headers,
timeout=10
)
if response.status_code == 200:
return response.json()
except:
pass
return []
async def search_models_by_keyword(keyword: str, api_key: str = None) -> List[Dict]:
"""Search models by keyword in name/description"""
try:
headers = {}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
response = requests.get(
f"https://huggingface.co/api/models?search={keyword}&sort=downloads&limit=10",
headers=headers,
timeout=10
)
if response.status_code == 200:
return response.json()
except:
pass
return []
def calculate_model_relevance(model: Dict, query: str, keywords: List[str],
complexity: str = "intermediate", preferred_models: List[str] = None) -> float:
"""Enhanced multi-criteria model relevance scoring"""
score = 0
model_name = model.get("id", "").lower()
model_task = model.get("pipeline_tag", "").lower()
downloads = model.get("downloads", 0)
# 1. Base popularity score (0-15 points)
if downloads > 10000000: # 10M+
score += 15
elif downloads > 1000000: # 1M+
score += 12
elif downloads > 100000: # 100K+
score += 8
elif downloads > 10000: # 10K+
score += 5
elif downloads > 1000: # 1K+
score += 2
# 2. Direct keyword relevance (0-30 points)
for keyword in keywords:
if keyword in model_name:
score += 25
# Check in model description/tags if available
model_tags = model.get("tags", [])
if any(keyword in str(tag).lower() for tag in model_tags):
score += 15
# 3. Query term matches (0-20 points)
query_words = [w for w in query.lower().split() if len(w) > 3]
for word in query_words:
if word in model_name:
score += 8
if word in str(model.get("tags", [])).lower():
score += 5
# 4. Preferred model architecture bonus (0-25 points)
if preferred_models:
for preferred in preferred_models:
if preferred.lower() in model_name:
score += 20
break
# Partial matches
for preferred in preferred_models:
if any(part in model_name for part in preferred.lower().split('_')):
score += 10
break
# 5. Task alignment (0-20 points)
relevant_tasks = ["tabular-classification", "tabular-regression", "text-classification",
"time-series-forecasting", "question-answering"]
if model_task in relevant_tasks:
score += 15
# 6. Complexity alignment (0-15 points)
complexity_indicators = {
"beginner": ["base", "simple", "basic", "distil", "small", "mini"],
"intermediate": ["medium", "standard", "v2", "improved"],
"advanced": ["large", "xl", "xxl", "advanced", "complex", "ensemble"]
}
if complexity in complexity_indicators:
for indicator in complexity_indicators[complexity]:
if indicator in model_name:
score += 12
break
# 7. Production readiness indicators (0-10 points)
production_terms = ["production", "optimized", "efficient", "fast", "deployment"]
for term in production_terms:
if term in model_name:
score += 8
break
# 8. Penalties for problematic models (negative points)
penalty_terms = ["nsfw", "adult", "sexual", "violence", "toxic", "unsafe", "experimental"]
for term in penalty_terms:
if term in model_name:
score -= 30
# Generic model penalty
generic_terms = ["general", "random", "test", "example", "demo"]
for term in generic_terms:
if term in model_name:
score -= 10
# 9. Model quality indicators (0-10 points)
quality_terms = ["sota", "benchmark", "award", "winner", "best", "top"]
for term in quality_terms:
if term in model_name or term in str(model.get("tags", [])).lower():
score += 8
break
# 10. Recency bonus (0-5 points) - prefer newer models
# This would require model creation date, approximating with model name patterns
recent_indicators = ["2024", "2023", "v3", "v4", "v5", "latest", "new"]
for indicator in recent_indicators:
if indicator in model_name:
score += 3
break
return max(score, 0)
def is_fine_tuned_model(model: Dict, keywords: List[str]) -> bool:
"""Determine if a model is fine-tuned/specialized for the specific task"""
model_name = model.get("id", "").lower()
# Models with specific task keywords in name are likely fine-tuned
for keyword in keywords:
if keyword in model_name:
return True
# Models with specific fine-tuning indicators
fine_tuned_indicators = [
"fine-tuned", "ft", "finetuned", "specialized", "custom",
"churn", "fraud", "sentiment", "classification", "detection",
"prediction", "analytics", "recommendation", "recommender"
]
for indicator in fine_tuned_indicators:
if indicator in model_name:
return True
# Models from specific companies/domains (often specialized)
domain_indicators = ["customer", "business", "financial", "ecommerce", "retail"]
for domain in domain_indicators:
if domain in model_name:
return True
return False
def is_general_suitable_model(model: Dict, primary_task: str) -> bool:
"""Determine if a model is a general foundation model suitable for the task"""
model_name = model.get("id", "").lower()
model_task = model.get("pipeline_tag", "").lower()
# Check if model task matches primary task
if model_task == primary_task:
return True
# General foundation models (base models good for fine-tuning)
foundation_indicators = [
"base", "large", "xlarge", "bert", "roberta", "distilbert",
"electra", "albert", "transformer", "gpt", "t5", "bart",
"deberta", "xlnet", "longformer"
]
for indicator in foundation_indicators:
if indicator in model_name and not any(x in model_name for x in ["nsfw", "safety", "toxicity"]):
return True
return False
async def get_foundation_models(primary_task: str, keywords: List[str], api_key: str = None) -> List[Dict]:
"""Get well-known foundation models suitable for the task"""
foundation_searches = []
if primary_task in ["text-classification", "token-classification"]:
foundation_searches = [
"bert-base-uncased", "roberta-base", "distilbert-base-uncased",
"microsoft/deberta-v3-base", "google/electra-base-discriminator"
]
elif primary_task in ["tabular-classification", "tabular-regression"]:
foundation_searches = [
"scikit-learn", "xgboost", "lightgbm", "catboost", "pytorch-tabular"
]
elif primary_task in ["text-generation", "conversational"]:
foundation_searches = [
"gpt2", "microsoft/DialoGPT-medium", "facebook/blenderbot"
]
elif primary_task in ["question-answering"]:
foundation_searches = [
"bert-base-uncased", "distilbert-base-uncased", "roberta-base"
]
models = []
for search_term in foundation_searches[:3]: # Top 3 foundation searches
try:
headers = {}
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
response = requests.get(
f"https://huggingface.co/api/models?search={search_term}&sort=downloads&limit=3",
headers=headers,
timeout=10
)
if response.status_code == 200:
models.extend(response.json())
except:
continue
return models[:3] # Return top 3
def get_model_specialty(model: Dict, keywords: List[str]) -> str:
"""Get human-readable specialty description for a model"""
model_name = model.get("id", "").lower()
# Map keywords to descriptions
specialty_map = {
"churn": "customer churn prediction",
"fraud": "fraud detection",
"sentiment": "sentiment analysis",
"recommendation": "recommendation systems",
"classification": "classification tasks",
"detection": "detection tasks",
"prediction": "prediction tasks"
}
for keyword in keywords:
if keyword in specialty_map:
return specialty_map[keyword]
# Fallback: try to infer from model name
if "churn" in model_name:
return "customer churn prediction"
elif "fraud" in model_name:
return "fraud detection"
elif "sentiment" in model_name:
return "sentiment analysis"
elif "recommend" in model_name:
return "recommendation systems"
else:
return "specialized ML tasks"
# Serve static files
app.mount("/static", StaticFiles(directory="static"), name="static")
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860) # HF Spaces uses port 7860 |