UGround-V1-72B-Demo / server.py
ChickenMcSwag's picture
nice
92d639d
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
import torch, os, base64, io, logging, time
from typing import Any, Dict, List, Tuple
from PIL import Image
MODEL_ID = "osunlp/UGround-V1-72B"
CACHE_DIR = (
os.environ.get("HF_HUB_CACHE")
or os.environ.get("HF_HOME")
or "/data/huggingface"
)
# PyTorch performance settings
# 1) Ensure CUDA kernel cache directory is writable/persistent to avoid recompilation stalls
KERNEL_CACHE_DIR = os.environ.get("PYTORCH_KERNEL_CACHE_PATH", "/tmp/torch_kernels")
os.environ["PYTORCH_KERNEL_CACHE_PATH"] = KERNEL_CACHE_DIR
try:
os.makedirs(KERNEL_CACHE_DIR, exist_ok=True)
except Exception:
pass
# 2) Enable TF32 for faster matmul on Ampere+ GPUs (minimal quality impact)
try:
torch.backends.cuda.matmul.allow_tf32 = True # type: ignore[attr-defined]
torch.backends.cudnn.allow_tf32 = True # type: ignore[attr-defined]
torch.set_float32_matmul_precision("high") # type: ignore[attr-defined]
except Exception:
pass
processor = AutoProcessor.from_pretrained(
MODEL_ID, trust_remote_code=True, cache_dir=CACHE_DIR, use_fast=False
)
model = Qwen2VLForConditionalGeneration.from_pretrained(
MODEL_ID,
dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
cache_dir=CACHE_DIR,
)
model.eval()
try:
torch.set_grad_enabled(False)
except Exception:
pass
app = FastAPI()
# Configure basic logging for debugging
logging.basicConfig(
level=logging.DEBUG,
format="%(asctime)s %(levelname)s %(name)s: %(message)s"
)
logger = logging.getLogger(__name__)
@app.get("/")
async def root():
return {"status": "ok"}
class ChatCompletionRequest(BaseModel):
model: str
messages: List[Dict[str, Any]]
max_tokens: int = 256
MAX_IMAGE_WIDTH = 512
MAX_IMAGE_HEIGHT = 388
def _decode_base64_image(data_url: str) -> Image.Image:
try:
is_data_url = data_url.startswith("data:")
if is_data_url:
header, b64data = data_url.split(",", 1)
logger.debug("Decoding image from data URL; header prefix=%r", header[:50])
else:
b64data = data_url
logger.debug("Decoding image from raw base64 string; length=%d", len(b64data))
img_bytes = base64.b64decode(b64data)
img = Image.open(io.BytesIO(img_bytes)).convert("RGB")
orig_w, orig_h = img.width, img.height
# Downscale if larger than bounds, preserving aspect ratio
if orig_w > MAX_IMAGE_WIDTH or orig_h > MAX_IMAGE_HEIGHT:
target = (MAX_IMAGE_WIDTH, MAX_IMAGE_HEIGHT)
img = img.copy()
img.thumbnail(target, Image.LANCZOS)
logger.debug(
"Resized image from %sx%s to %sx%s (bounds %sx%s)",
orig_w,
orig_h,
img.width,
img.height,
MAX_IMAGE_WIDTH,
MAX_IMAGE_HEIGHT,
)
try:
logger.debug("Decoded image: size=%sx%s mode=%s", img.width, img.height, img.mode)
except Exception:
logger.debug("Decoded image but could not log image metadata")
return img
except Exception:
logger.exception("Failed to decode base64 image")
raise
def _to_qwen_messages_and_images(messages: List[Dict[str, Any]]) -> Tuple[List[Dict[str, Any]], List[Any]]:
qwen_msgs: List[Dict[str, Any]] = []
images: List[Any] = []
logger.debug("Begin parsing messages: count=%d", len(messages) if messages else 0)
for idx, msg in enumerate(messages):
role = msg.get("role", "user")
content = msg.get("content")
logger.debug("Processing message #%d role=%s content_type=%s", idx, role, type(content).__name__)
q_content: List[Dict[str, Any]] = []
if isinstance(content, str):
logger.debug("Message #%d text length=%d", idx, len(content))
q_content.append({"type": "text", "text": content})
elif isinstance(content, list):
logger.debug("Message #%d has %d content parts", idx, len(content))
for pidx, part in enumerate(content):
ptype = part.get("type")
logger.debug("Part #%d type=%s", pidx, ptype)
if ptype == "text":
text_val = part.get("text") or part.get("content") or ""
logger.debug("Part #%d text length=%d", pidx, len(text_val))
q_content.append({"type": "text", "text": text_val})
elif ptype in ("image", "image_url"):
# OpenAI style: {type:"image_url", image_url:{url:"..."}}
url = part.get("image")
if url is None and isinstance(part.get("image_url"), dict):
url = part["image_url"].get("url")
if isinstance(url, str) and url.startswith("data:image"):
logger.debug("Part #%d image provided as base64 data URL", pidx)
img = _decode_base64_image(url)
images.append(img)
q_content.append({"type": "image", "image": img})
else:
# URL or non-base64 string
logger.debug("Part #%d image provided as URL or non-base64 string: %s", pidx, str(url)[:200])
images.append(url)
q_content.append({"type": "image", "image": url})
else:
# Unknown content; coerce to text
logger.debug("Message #%d unknown content type; coercing to text", idx)
q_content.append({"type": "text", "text": str(content)})
qwen_msgs.append({"role": role, "content": q_content})
logger.debug("Finished parsing messages: qwen_msgs=%d images=%d", len(qwen_msgs), len(images))
return qwen_msgs, images
def _make_tiny_base64_png(size: Tuple[int, int] = (64, 48), color: Tuple[int, int, int] = (128, 128, 128)) -> str:
buf = io.BytesIO()
Image.new("RGB", size, color).save(buf, format="PNG")
data = base64.b64encode(buf.getvalue()).decode("ascii")
return f"data:image/png;base64,{data}"
@app.on_event("startup")
async def _startup_warmup():
if os.environ.get("DISABLE_WARMUP", "0") == "1":
logger.info("Warmup disabled via DISABLE_WARMUP=1")
return
try:
logger.info("Warmup start: compiling kernels (text + tiny image)")
# Text-only warmup
text_msgs: List[Dict[str, Any]] = [
{"role": "user", "content": "Hello"}
]
qmsgs_t, _ = _to_qwen_messages_and_images(text_msgs)
prompt_t = processor.apply_chat_template(qmsgs_t, tokenize=False, add_generation_prompt=True)
inputs_t = processor(text=[prompt_t], images=None, padding=True, return_tensors="pt")
inputs_t = inputs_t.to(model.device)
_t0 = time.perf_counter()
with torch.no_grad():
_ = model.generate(**inputs_t, max_new_tokens=int(os.environ.get("WARMUP_MAX_NEW_TOKENS", "4")), max_time=float(os.environ.get("WARMUP_MAX_TIME_SECONDS", "3")))
logger.info("Text warmup done in %.1f ms", (time.perf_counter() - _t0) * 1000.0)
# Tiny image + text warmup
tiny_url = _make_tiny_base64_png()
viz_msgs: List[Dict[str, Any]] = [
{"role": "user", "content": [
{"type": "text", "text": "Describe the image"},
{"type": "image_url", "image_url": {"url": tiny_url}},
]}
]
qmsgs_v, images_v = _to_qwen_messages_and_images(viz_msgs)
prompt_v = processor.apply_chat_template(qmsgs_v, tokenize=False, add_generation_prompt=True)
inputs_v = processor(text=[prompt_v], images=images_v, padding=True, return_tensors="pt")
inputs_v = inputs_v.to(model.device)
_t1 = time.perf_counter()
with torch.no_grad():
_ = model.generate(**inputs_v, max_new_tokens=int(os.environ.get("WARMUP_MAX_NEW_TOKENS", "4")), max_time=float(os.environ.get("WARMUP_MAX_TIME_SECONDS", "3")))
logger.info("Vision warmup done in %.1f ms", (time.perf_counter() - _t1) * 1000.0)
logger.info("Warmup complete")
except Exception:
logger.exception("Warmup failed")
@app.post("/v1/chat/completions")
async def chat_completions(req: ChatCompletionRequest):
logger.debug(
"Request received: model=%s, max_tokens=%s, message_count=%d",
req.model,
req.max_tokens,
len(req.messages) if req.messages is not None else 0,
)
if req.messages:
logger.debug("First message preview: %s", str(req.messages[0])[:300])
qwen_messages, image_inputs = _to_qwen_messages_and_images(req.messages)
logger.debug(
"Converted messages: qwen_count=%d, images_count=%d",
len(qwen_messages),
len(image_inputs) if image_inputs is not None else 0,
)
if qwen_messages:
logger.debug("First qwen message preview: %s", str(qwen_messages[0])[:300])
prompt_text = processor.apply_chat_template(
qwen_messages, tokenize=False, add_generation_prompt=True
)
logger.debug("Prompt length (chars)=%d; preview=%r", len(prompt_text), prompt_text[:200])
inputs = processor(
text=[prompt_text],
images=image_inputs if image_inputs else None,
padding=True,
return_tensors="pt",
)
try:
tensor_info_pre = {
k: (tuple(v.shape), str(getattr(v, "dtype", "<na>")))
for k, v in inputs.items()
if hasattr(v, "shape")
}
logger.debug("Processor outputs (pre .to): %s", tensor_info_pre)
except Exception:
logger.debug("Could not summarize processor outputs before device move")
inputs = inputs.to(model.device)
try:
tensor_info_post = {
k: (
tuple(v.shape),
str(getattr(v, "dtype", "<na>")),
str(getattr(v, "device", "<na>")),
)
for k, v in inputs.items()
if torch.is_tensor(v)
}
logger.debug("Inputs moved to device=%s; tensor_info=%s", getattr(model, "device", "<unknown>"), tensor_info_post)
except Exception:
logger.debug("Could not summarize inputs after device move")
logger.debug("Starting generation: max_new_tokens=%d", req.max_tokens)
_t0 = time.perf_counter()
generated_ids = model.generate(**inputs, max_new_tokens=req.max_tokens)
_elapsed_ms = (time.perf_counter() - _t0) * 1000.0
try:
logger.debug(
"Generation done in %.1f ms; generated_ids shape=%s dtype=%s device=%s",
_elapsed_ms,
tuple(generated_ids.shape) if hasattr(generated_ids, "shape") else "<na>",
str(getattr(generated_ids, "dtype", "<na>")),
str(getattr(generated_ids, "device", "<na>")),
)
except Exception:
logger.debug("Could not summarize generated_ids")
trimmed = [
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
try:
lengths_in = [row.size(0) for row in inputs.input_ids]
lengths_out = [row.size(0) for row in generated_ids]
logger.debug("Token lengths: input=%s, output=%s", lengths_in, lengths_out)
except Exception:
logger.debug("Could not compute token length summaries")
output_texts = processor.batch_decode(
trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
text = output_texts[0] if output_texts else ""
logger.debug(
"Decoded %d sequences; first_text_len=%d",
len(output_texts),
len(text) if text else 0,
)
if text:
logger.debug("Output preview: %r", text[:500])
return {
"id": "chatcmpl-uground72b",
"object": "chat.completion",
"choices": [{
"index": 0,
"message": {"role": "assistant", "content": text},
"finish_reason": "stop"
}]
}