A.BoT / Dockerfile
Aonei's picture
Create Dockerfile
4e45a41
import random
import string
import re
class ABS:
"""Artificial Intelligence System"""
def __init__(self):
"""Initialize the Artificial Intelligence System."""
self.random_string_regex = r'\w{5}'
def answer_questions(self, question):
"""Provide information on a wide range of topics."""
# Use NLP techniques to interpret questions and search knowledge bases for answers
return "Sorry, I don't have enough information to answer that."
def process_data(self, data):
"""Clean and preprocess data."""
# Perform data cleaning operations such as removing duplicates, handling missing values, and encoding categorical variables
return data
def assist_with_coding(self, language, code):
"""Help with coding in various languages."""
# Check syntax correctness, suggest improvements, and offer debugging tips
supported_langs = ['Python', 'JavaScript']
if language not in supported_langs:
return f"I currently support {', '.join(supported_langs)}, sorry!"
else:
return eval(f"compile({code}, '<string>', mode='exec')")
def provide_domain_knowledge(self, domain, concept):
"""Provide information and explanations related to domains and concepts."""
# Retrieve definitions and explanations from curated databases or third-party sources
supported_domains = {'AI': {}, 'ML': {}}
if domain not in supported_domains:
return f"Sorry, I don't have much information about '{domain}' yet."
elif concept not in supported_domains[domain]:
return f"There isn't any detailed info available on '{concept}' at the moment."
else:
definition = supported_domains[domain][concept]['definition']
explanation = supported_domains[domain][concept]['explanation']
return f"Definition: {definition}\nExplanation:\n{explanation}"
def integrate_with_services(self, service_url):
"""Connect to external libraries, APIs, or services."""
# Make API calls, download files, install packages, or perform similar actions
try:
resp = requests.get(service_url)
if resp.status_code != 200:
raise Exception('Failed to fetch resource.')
result = resp.json()
if isinstance(result, dict):
return '\n'.join([f'{k}: {v}' for k, v in sorted(result.items())])
elif isinstance(result, list):
max_len = len(max(result, key=lambda x: len(str(x))))
return '\n'.join([f"{i}. {str(item).rjust(max_len)}" for i, item in enumerate(result, start=1)])
except Exception as e:
return str(e)
def implement_language_techniques(self, language, technique):
"""Apply advanced natural language processing techniques."""
# Employ ML models, rule-based systems, or heuristics to analyze and manipulate text
supported_techs = {
'Sentiment Analysis': ('positive', 'negative'),
'Named Entity Recognition': ('person', 'organization', 'location')
}
if language not in ('English', 'Spanish'):
return f"Currently, I support English and Spanish only."
elif technique not in supported_techs:
return f"Supported techniques are: {', '.join(supported_techs)}."
else:
model_path = f"models/{language}/{technique}_model.pkl"
if not os.path.exists(model_path):
return "Model file does not exist. Please ensure proper installation first."
with open(model_path, 'rb') as f:
loaded_model = pickle.load(f)
prediction = loaded_model.predict(X=[sentence])[0]
label = supported_techs[technique][prediction - 1]
confidence = round(loaded_model.predict_proba(X=[sentence]), 3)[0][prediction - 1] * 100
return f"Label: {label}\nConfidence: {confidence}%"
def learn_new_methods(self, method):
"""Update internal processes and algorithms."""
# Download datasets, train models, fine-tune parameters, and save results
if method == 'reinforcement learning':
pass
else:
return f"Unsupported method '{method}', please choose reinforcement learning instead."
def proce