|
import random |
|
import string |
|
import re |
|
|
|
class ABS: |
|
"""Artificial Intelligence System""" |
|
|
|
def __init__(self): |
|
"""Initialize the Artificial Intelligence System.""" |
|
|
|
self.random_string_regex = r'\w{5}' |
|
|
|
def answer_questions(self, question): |
|
"""Provide information on a wide range of topics.""" |
|
|
|
return "Sorry, I don't have enough information to answer that." |
|
|
|
def process_data(self, data): |
|
"""Clean and preprocess data.""" |
|
|
|
return data |
|
|
|
def assist_with_coding(self, language, code): |
|
"""Help with coding in various languages.""" |
|
|
|
supported_langs = ['Python', 'JavaScript'] |
|
if language not in supported_langs: |
|
return f"I currently support {', '.join(supported_langs)}, sorry!" |
|
else: |
|
return eval(f"compile({code}, '<string>', mode='exec')") |
|
|
|
def provide_domain_knowledge(self, domain, concept): |
|
"""Provide information and explanations related to domains and concepts.""" |
|
|
|
supported_domains = {'AI': {}, 'ML': {}} |
|
if domain not in supported_domains: |
|
return f"Sorry, I don't have much information about '{domain}' yet." |
|
elif concept not in supported_domains[domain]: |
|
return f"There isn't any detailed info available on '{concept}' at the moment." |
|
else: |
|
definition = supported_domains[domain][concept]['definition'] |
|
explanation = supported_domains[domain][concept]['explanation'] |
|
return f"Definition: {definition}\nExplanation:\n{explanation}" |
|
|
|
def integrate_with_services(self, service_url): |
|
"""Connect to external libraries, APIs, or services.""" |
|
|
|
try: |
|
resp = requests.get(service_url) |
|
if resp.status_code != 200: |
|
raise Exception('Failed to fetch resource.') |
|
|
|
result = resp.json() |
|
if isinstance(result, dict): |
|
return '\n'.join([f'{k}: {v}' for k, v in sorted(result.items())]) |
|
elif isinstance(result, list): |
|
max_len = len(max(result, key=lambda x: len(str(x)))) |
|
return '\n'.join([f"{i}. {str(item).rjust(max_len)}" for i, item in enumerate(result, start=1)]) |
|
except Exception as e: |
|
return str(e) |
|
|
|
def implement_language_techniques(self, language, technique): |
|
"""Apply advanced natural language processing techniques.""" |
|
|
|
supported_techs = { |
|
'Sentiment Analysis': ('positive', 'negative'), |
|
'Named Entity Recognition': ('person', 'organization', 'location') |
|
} |
|
if language not in ('English', 'Spanish'): |
|
return f"Currently, I support English and Spanish only." |
|
elif technique not in supported_techs: |
|
return f"Supported techniques are: {', '.join(supported_techs)}." |
|
else: |
|
model_path = f"models/{language}/{technique}_model.pkl" |
|
if not os.path.exists(model_path): |
|
return "Model file does not exist. Please ensure proper installation first." |
|
with open(model_path, 'rb') as f: |
|
loaded_model = pickle.load(f) |
|
prediction = loaded_model.predict(X=[sentence])[0] |
|
label = supported_techs[technique][prediction - 1] |
|
confidence = round(loaded_model.predict_proba(X=[sentence]), 3)[0][prediction - 1] * 100 |
|
return f"Label: {label}\nConfidence: {confidence}%" |
|
|
|
def learn_new_methods(self, method): |
|
"""Update internal processes and algorithms.""" |
|
|
|
if method == 'reinforcement learning': |
|
pass |
|
else: |
|
return f"Unsupported method '{method}', please choose reinforcement learning instead." |
|
|
|
def proce |