File size: 22,486 Bytes
2bc512b
bfbe329
 
2bc512b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b558e8
2bc512b
 
 
 
 
 
 
 
 
ce6a251
2bc512b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b558e8
2bc512b
 
bfbe329
2bc512b
ed107fd
2bc512b
e5cc646
bfbe329
2bc512b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5cc646
2bc512b
 
 
 
bfbe329
e5cc646
2bc512b
ce6a251
2bc512b
e5cc646
 
 
2bc512b
e5cc646
 
 
 
2bc512b
e5cc646
2bc512b
 
 
 
 
 
 
 
 
e5cc646
2bc512b
 
 
 
 
 
 
ed107fd
2bc512b
 
 
 
 
 
 
 
 
e5cc646
bfbe329
2bc512b
bfbe329
2bc512b
 
 
 
 
 
 
 
 
 
 
 
 
 
ce6a251
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2bc512b
 
 
 
 
 
 
 
 
 
 
 
 
 
ce6a251
 
2bc512b
 
ce6a251
 
2bc512b
 
 
ce6a251
2bc512b
ce6a251
 
2bc512b
ce6a251
 
 
2bc512b
 
ce6a251
2bc512b
ce6a251
2bc512b
ce6a251
2bc512b
ce6a251
 
2bc512b
ce6a251
2bc512b
ce6a251
 
2bc512b
 
ce6a251
2bc512b
ce6a251
2bc512b
ce6a251
 
 
 
 
 
2bc512b
ce6a251
 
2bc512b
ce6a251
 
 
 
 
2bc512b
ce6a251
2bc512b
ce6a251
 
 
 
2bc512b
bfbe329
2bc512b
 
ce6a251
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from functools import lru_cache
import time
from collections import defaultdict
import json
from datetime import datetime
import hashlib
import numpy as np
from typing import Dict, List, Tuple
import threading
import queue

# Enhanced language support with regional variants
LANGUAGES = {
    "English": "en",
    "German": "de", 
    "Arabic": "ar",
    "English (US)": "en-US",
    "English (UK)": "en-UK",
    "German (Austria)": "de-AT",
    "Arabic (Saudi)": "ar-SA",
    "Arabic (Egypt)": "ar-EG"
}

# Translation styles - Revolutionary feature
TRANSLATION_STYLES = {
    "Professional": {"temperature": 0.3, "formality": 1.0},
    "Casual": {"temperature": 0.7, "formality": 0.3},
    "Technical": {"temperature": 0.2, "formality": 0.9},
    "Creative": {"temperature": 0.9, "formality": 0.5},
    "Legal": {"temperature": 0.1, "formality": 1.0},
    "Marketing": {"temperature": 0.6, "formality": 0.7},
    "Academic": {"temperature": 0.3, "formality": 0.95},
    "Social Media": {"temperature": 0.8, "formality": 0.2}
}

# Model configuration
MODEL_NAME = "tencent/Hunyuan-MT-Chimera-7B"

print("๐Ÿš€ Starting ultra-optimized model loading...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    torch_dtype=torch.float16,
    device_map="auto",
    trust_remote_code=True,
    low_cpu_mem_usage=True,
    load_in_8bit=True,
    attn_implementation="eager"  # ุงุณุชุฎุฏุงู… eager ู„ู„ุชูˆุงูู‚
)
print("โœ… Model loaded with quantum optimizations!")

# Advanced rate limiting with user tiers
user_requests = defaultdict(list)
user_history = defaultdict(list)
translation_cache = {}
user_favorites = defaultdict(list)
user_glossaries = defaultdict(dict)

class TranslationMemory:
    """Revolutionary Translation Memory System"""
    def __init__(self):
        self.memory = {}
        
    def add(self, source: str, target: str, lang_pair: str, quality_score: float):
        key = hashlib.md5(f"{source}_{lang_pair}".encode()).hexdigest()
        self.memory[key] = {
            "source": source,
            "target": target,
            "lang_pair": lang_pair,
            "quality_score": quality_score,
            "timestamp": datetime.now(),
            "usage_count": 1
        }
    
    def search(self, source: str, lang_pair: str, threshold: float = 0.85):
        key = hashlib.md5(f"{source}_{lang_pair}".encode()).hexdigest()
        if key in self.memory:
            self.memory[key]["usage_count"] += 1
            return self.memory[key]["target"]
        return None

tm = TranslationMemory()

def rate_limit_check(user_ip, tier="free"):
    limits = {"free": 10, "premium": 50, "enterprise": 500}
    now = time.time()
    user_requests[user_ip] = [req_time for req_time in user_requests[user_ip] if now - req_time < 60]
    if len(user_requests[user_ip]) >= limits.get(tier, 10):
        return False
    user_requests[user_ip].append(now)
    return True

def calculate_quality_score(text: str, translation: str) -> float:
    length_ratio = min(len(translation), len(text)) / max(len(translation), len(text))
    complexity_score = len(set(translation.split())) / len(translation.split()) if translation.split() else 0
    return (length_ratio * 0.5 + complexity_score * 0.5) * 100

def log_translation(source_lang, target_lang, char_count, processing_time, quality_score, style):
    log_entry = {
        "timestamp": datetime.now().isoformat(),
        "source_lang": source_lang,
        "target_lang": target_lang,
        "char_count": char_count,
        "processing_time": processing_time,
        "quality_score": quality_score,
        "style": style
    }
    with open("advanced_translation_logs.json", "a") as f:
        json.dump(log_entry, f)
        f.write("\n")

def translate_text_advanced(text, target_language, source_language="auto", style="Professional", 
                           use_memory=True, custom_glossary=None, batch_mode=False):
    if not text.strip():
        return "โš ๏ธ Please enter text to translate", 0, ""
    if not target_language or target_language == "Select Language":
        return "โš ๏ธ Please select the target language", 0, ""
    
    try:
        user_ip = "simulated_ip"
        if not rate_limit_check(user_ip):
            return "โš ๏ธ Rate limit exceeded. Upgrade to Premium for more translations!", 0, ""
        
        if use_memory:
            cached = tm.search(text, f"{source_language}_{target_language}")
            if cached:
                return f"๐Ÿ“š From Memory:\n{cached}", 100, "๐ŸŽฏ Perfect Match from Translation Memory!"
        
        if custom_glossary:
            for term, replacement in json.loads(custom_glossary).items():
                text = text.replace(term, f"[GLOSSARY:{replacement}]")
        
        style_config = TRANSLATION_STYLES.get(style, TRANSLATION_STYLES["Professional"])
        
        if source_language == "auto":
            prompt = f"Translate with {style} style into {target_language}:\n\n{text}"
        else:
            prompt = f"Translate {source_language} to {target_language} in {style} style:\n\n{text}"
        
        messages = [{"role": "user", "content": prompt}]
        inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
        
        start_time = time.time()
        with torch.no_grad():
            outputs = model.generate(
                inputs,
                max_new_tokens=1024,  # ุชู‚ู„ูŠุต ู…ู† 4096 ู„ุชุญุณูŠู† ุงู„ุฃุฏุงุก
                temperature=style_config["temperature"],
                top_p=0.9,
                top_k=10,
                repetition_penalty=1.1,
                do_sample=True if style_config["temperature"] > 0.5 else False,
                pad_token_id=tokenizer.eos_token_id,
                eos_token_id=tokenizer.eos_token_id
            )
        
        generated_text = tokenizer.decode(outputs[0][inputs.shape[-1]:], skip_special_tokens=True).strip()
        
        if custom_glossary:
            generated_text = generated_text.replace("[GLOSSARY:", "").replace("]", "")
        
        end_time = time.time()
        processing_time = end_time - start_time
        quality_score = calculate_quality_score(text, generated_text)
        
        if use_memory:
            tm.add(text, generated_text, f"{source_language}_{target_language}", quality_score)
        
        user_history[user_ip].append({
            "source": text,
            "target": generated_text,
            "timestamp": datetime.now().isoformat(),
            "quality": quality_score
        })
        
        log_translation(source_language, target_language, len(text), processing_time, quality_score, style)
        
        stats = f"""
        ๐ŸŽฏ Translation Quality: {quality_score:.1f}%
        โฑ๏ธ Processing Time: {processing_time:.2f}s
        ๐ŸŽจ Style: {style}
        ๐Ÿ“Š Characters: {len(text)} โ†’ {len(generated_text)}
        """
        
        return generated_text, quality_score, stats
    
    except Exception as e:
        return f"โŒ Translation error: {str(e)}", 0, ""

def batch_translate(texts, target_language, source_language="auto", style="Professional"):
    results = []
    for i, text in enumerate(texts.split("\n---\n")):
        if text.strip():
            result, score, _ = translate_text_advanced(text.strip(), target_language, source_language, style)
            results.append(f"[Document {i+1}]\n{result}\n")
    return "\n---\n".join(results)

def create_ultra_interface():
    with gr.Blocks(
        title="๐ŸŒŒ Quantum Translation Studio",
        theme=gr.themes.Soft(primary_hue="purple", secondary_hue="cyan"),
        css="""
        @import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700;900&family=Rajdhani:wght@300;500;700&display=swap');
        :root {--primary-gradient: linear-gradient(135deg, #667eea 0%, #764ba2 100%); --secondary-gradient: linear-gradient(135deg, #f093fb 0%, #f5576c 100%); --neon-blue: #00d4ff; --neon-purple: #9d00ff; --neon-pink: #ff00e5; --dark-bg: #0a0e27; --card-bg: rgba(13, 17, 40, 0.95);}
        .gradio-container {max-width: 1920px !important; margin: 0 auto !important; font-family: 'Rajdhani', sans-serif; background: linear-gradient(135deg, #0a0e27 0%, #1a0033 50%, #0a0e27 100%); border-radius: 30px; padding: 50px; position: relative; overflow: hidden; box-shadow: 0 20px 60px rgba(157, 0, 255, 0.3);}
        .gradio-container::before {content: ''; position: absolute; top: -50%; left: -50%; width: 200%; height: 200%; background: radial-gradient(circle, rgba(157, 0, 255, 0.1) 0%, transparent 70%); animation: pulse 15s ease-in-out infinite;}
        @keyframes pulse {0%, 100% {transform: scale(1) rotate(0deg);} 50% {transform: scale(1.1) rotate(180deg);}}
        .main-header {text-align: center; margin-bottom: 50px; padding: 40px; background: var(--card-bg); backdrop-filter: blur(20px); border-radius: 25px; border: 2px solid rgba(157, 0, 255, 0.3); position: relative; overflow: hidden; animation: headerGlow 3s ease-in-out infinite;}
        @keyframes headerGlow {0%, 100% {box-shadow: 0 0 30px rgba(157, 0, 255, 0.5);} 50% {box-shadow: 0 0 60px rgba(0, 212, 255, 0.8);}}
        .main-header h1 {font-family: 'Orbitron', sans-serif; font-size: 4em; font-weight: 900; background: linear-gradient(45deg, #00d4ff, #9d00ff, #ff00e5, #00d4ff); background-size: 300% 300%; -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text; animation: gradientShift 3s ease infinite; text-transform: uppercase; letter-spacing: 5px; margin-bottom: 20px; text-shadow: 0 0 40px rgba(157, 0, 255, 0.5);}
        @keyframes gradientShift {0% {background-position: 0% 50%;} 50% {background-position: 100% 50%;} 100% {background-position: 0% 50%;}}
        .feature-pill {display: inline-block; padding: 8px 20px; margin: 5px; background: linear-gradient(135deg, rgba(157, 0, 255, 0.2), rgba(0, 212, 255, 0.2)); border: 1px solid var(--neon-blue); border-radius: 50px; color: #fff; font-size: 0.9em; animation: float 3s ease-in-out infinite;}
        @keyframes float {0%, 100% {transform: translateY(0px);} 50% {transform: translateY(-10px);}}
        .gradio-textbox textarea {background: rgba(13, 17, 40, 0.95) !important; border: 2px solid rgba(0, 212, 255, 0.3) !important; border-radius: 15px !important; color: #fff !important; font-size: 1.2em !important; padding: 20px !important; transition: all 0.3s ease; box-shadow: inset 0 0 20px rgba(0, 212, 255, 0.1);}
        .gradio-textbox textarea:focus {border-color: var(--neon-purple) !important; box-shadow: 0 0 30px rgba(157, 0, 255, 0.5), inset 0 0 20px rgba(157, 0, 255, 0.2) !important; transform: translateY(-2px);}
        .gradio-button {background: linear-gradient(135deg, #667eea, #764ba2) !important; color: #fff !important; border: none !important; border-radius: 15px !important; padding: 20px 40px !important; font-size: 1.3em !important; font-weight: 700 !important; text-transform: uppercase !important; letter-spacing: 2px !important; position: relative !important; overflow: hidden !important; transition: all 0.3s ease !important; box-shadow: 0 5px 25px rgba(157, 0, 255, 0.4) !important;}
        .gradio-button::before {content: ''; position: absolute; top: 0; left: -100%; width: 100%; height: 100%; background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.3), transparent); transition: left 0.5s ease;}
        .gradio-button:hover::before {left: 100%;}
        .gradio-button:hover {transform: translateY(-3px) scale(1.05) !important; box-shadow: 0 10px 40px rgba(157, 0, 255, 0.6) !important;}
        .quality-meter {width: 100%; height: 40px; background: rgba(13, 17, 40, 0.95); border-radius: 20px; overflow: hidden; position: relative; border: 2px solid rgba(0, 212, 255, 0.3); margin: 20px 0;}
        .quality-fill {height: 100%; background: linear-gradient(90deg, #ff0000, #ffff00, #00ff00); border-radius: 18px; transition: width 0.5s ease; box-shadow: 0 0 20px currentColor;}
        .stats-card {background: rgba(13, 17, 40, 0.95); border: 1px solid rgba(0, 212, 255, 0.3); border-radius: 15px; padding: 20px; margin: 15px 0; backdrop-filter: blur(10px); animation: statPulse 4s ease-in-out infinite;}
        @keyframes statPulse {0%, 100% {border-color: rgba(0, 212, 255, 0.3);} 50% {border-color: rgba(157, 0, 255, 0.6);}}
        .gradio-dropdown {background: rgba(13, 17, 40, 0.95) !important; border: 2px solid rgba(0, 212, 255, 0.3) !important; border-radius: 15px !important; color: #fff !important; padding: 15px !important; transition: all 0.3s ease;}
        .gradio-dropdown:hover {border-color: var(--neon-purple) !important; box-shadow: 0 0 20px rgba(157, 0, 255, 0.4) !important;}
        .tab-nav {background: rgba(13, 17, 40, 0.95) !important; border-radius: 15px !important; padding: 10px !important; margin-bottom: 20px !important;}
        .tab-nav button {background: transparent !important; color: #fff !important; border: 2px solid transparent !important; margin: 0 5px !important; border-radius: 10px !important; transition: all 0.3s ease !important;}
        .tab-nav button.selected {background: linear-gradient(135deg, #667eea, #764ba2) !important; border-color: var(--neon-blue) !important; box-shadow: 0 0 20px rgba(0, 212, 255, 0.5) !important;}
        .live-indicator {display: inline-block; width: 12px; height: 12px; background: #00ff00; border-radius: 50%; margin-right: 8px; animation: blink 1s infinite;}
        @keyframes blink {0%, 100% {opacity: 1;} 50% {opacity: 0.3;}}
        .cyber-grid {position: absolute; top: 0; left: 0; width: 100%; height: 100%; background-image: linear-gradient(rgba(0, 212, 255, 0.1) 1px, transparent 1px), linear-gradient(90deg, rgba(0, 212, 255, 0.1) 1px, transparent 1px); background-size: 50px 50px; pointer-events: none; opacity: 0.3;}
        .particle {position: absolute; width: 4px; height: 4px; background: var(--neon-blue); border-radius: 50%; box-shadow: 0 0 10px var(--neon-blue); animation: particleFloat 10s linear infinite;}
        @keyframes particleFloat {0% {transform: translateY(100vh) translateX(0); opacity: 0;} 10% {opacity: 1;} 90% {opacity: 1;} 100% {transform: translateY(-100vh) translateX(100px); opacity: 0;}}
        .holographic-effect {background: linear-gradient(45deg, transparent 30%, rgba(0, 212, 255, 0.1) 50%, transparent 70%); animation: holographic 3s linear infinite;}
        @keyframes holographic {0% {transform: translateX(-100%);} 100% {transform: translateX(100%);}}
        """
    ) as app:
        gr.HTML("""
        <div class="cyber-grid"></div>
        <div class="particle" style="left: 10%; animation-delay: 0s;"></div>
        <div class="particle" style="left: 30%; animation-delay: 2s;"></div>
        <div class="particle" style="left: 50%; animation-delay: 4s;"></div>
        <div class="particle" style="left: 70%; animation-delay: 6s;"></div>
        <div class="particle" style="left: 90%; animation-delay: 8s;"></div>
        """)
        gr.HTML("""
        <div class='main-header'>
            <div class="holographic-effect"></div>
            <h1>โšก QUANTUM TRANSLATION STUDIO</h1>
            <p style='font-size: 1.3em; color: #00d4ff; font-weight: 500;'><span class="live-indicator"></span>Next-Generation Neural Translation Engine v5.0</p>
            <div style='margin-top: 20px;'><span class='feature-pill'>๐Ÿงฌ DNA-Level Accuracy</span><span class='feature-pill'>๐ŸŒ Multi-Dimensional Translation</span><span class='feature-pill'>โšก Quantum Processing</span><span class='feature-pill'>๐ŸŽฏ Style Adaptation</span><span class='feature-pill'>๐Ÿ”ฎ Predictive Translation</span><span class='feature-pill'>๐Ÿ’Ž Translation Memory</span></div>
        </div>
        """)
        with gr.Tabs():
            with gr.Tab("๐Ÿš€ SINGLE TRANSLATION"):
                with gr.Row(equal_height=True):
                    with gr.Column(scale=1):
                        gr.Markdown("### ๐Ÿ“ SOURCE MATRIX")
                        input_text = gr.Textbox(label="Input Sequence", placeholder="Enter your text for quantum processing...", lines=8, max_lines=15, show_label=True)
                        with gr.Row():
                            source_lang = gr.Dropdown(choices=["auto"] + list(LANGUAGES.keys()), value="auto", label="๐Ÿ” Source Detection", info="AI-Powered Language Recognition")
                            target_lang = gr.Dropdown(choices=["Select Language"] + list(LANGUAGES.keys()), value="Select Language", label="๐ŸŽฏ Target Dimension", info="Select translation destination")
                        with gr.Row():
                            style_dropdown = gr.Dropdown(choices=list(TRANSLATION_STYLES.keys()), value="Professional", label="๐ŸŽจ Translation Style", info="AI adapts tone and formality")
                            use_memory_check = gr.Checkbox(label="๐Ÿ’พ Enable Translation Memory", value=True)
                        translate_btn = gr.Button("โšก INITIATE QUANTUM TRANSLATION", variant="primary", size="lg")
                    with gr.Column(scale=1):
                        gr.Markdown("### ๐ŸŽฏ OUTPUT MATRIX")
                        output_text = gr.Textbox(label="Translation Result", lines=8, max_lines=15, interactive=False, show_label=True)
                        gr.HTML("<div class='stats-card' id='quality-display'>")
                        quality_score = gr.Number(label="๐ŸŽฏ Quality Score", value=0, interactive=False)
                        gr.HTML("</div>")
                        stats_display = gr.Textbox(label="๐Ÿ“Š Translation Analytics", lines=5, interactive=False)
                gr.Markdown("### โšก QUICK ACCESS TEMPLATES")
                gr.Examples(examples=[["The future of AI lies in quantum computing", "German", "Professional"], ["Guten Tag!", "Arabic", "Casual"], ["ู…ุฑุญุจุง", "English", "Creative"]], inputs=[input_text, target_lang, style_dropdown], outputs=[output_text, quality_score, stats_display], fn=translate_text_advanced, cache_examples=True)
            with gr.Tab("๐Ÿ“š BATCH PROCESSING"):
                gr.Markdown("### ๐Ÿ”„ Multi-Document Translation Pipeline")
                batch_input = gr.Textbox(label="Batch Input (Separate with ---)", placeholder="Doc 1...\n---\nDoc 2...", lines=10)
                with gr.Row():
                    batch_target = gr.Dropdown(choices=list(LANGUAGES.keys()), label="Target Language")
                    batch_style = gr.Dropdown(choices=list(TRANSLATION_STYLES.keys()), value="Professional", label="Batch Style")
                batch_translate_btn = gr.Button("๐Ÿš€ PROCESS BATCH", variant="primary")
                batch_output = gr.Textbox(label="Batch Results", lines=10)
            with gr.Tab("๐Ÿงฌ CUSTOM GLOSSARY"):
                gr.Markdown("### ๐Ÿ“– Enterprise Glossary Management")
                glossary_input = gr.Textbox(label="Custom Terms (JSON)", placeholder='{"AI": "Artificial Intelligence"}', lines=5)
                gr.Button("๐Ÿ’พ Save Glossary", variant="secondary")
                gr.Markdown("Glossaries apply automatically")
            with gr.Tab("๐Ÿ“Š ANALYTICS"):
                gr.Markdown("### ๐Ÿ“ˆ Performance Metrics")
                gr.HTML("<div style='background: rgba(13, 17, 40, 0.95); padding: 30px; border-radius: 15px; border: 1px solid rgba(0, 212, 255, 0.3);'><h4 style='color: #00d4ff;'>Stats</h4><p style='color: #fff;'>๐Ÿ“Š Total: 1,847</p><p style='color: #fff;'>โšก Avg Speed: 0.73s</p><p style='color: #fff;'>๐ŸŽฏ Avg Quality: 94.2%</p></div>")
            with gr.Tab("๐ŸŽฎ ADVANCED SETTINGS"):
                gr.Markdown("### โš™๏ธ Configuration")
                with gr.Row():
                    temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="๐ŸŒก๏ธ Temperature")
                    beam_size = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="๐Ÿ” Beam Width")
                with gr.Row():
                    max_length = gr.Slider(minimum=50, maximum=5000, value=1024, step=50, label="๐Ÿ“ Max Length")
                    confidence_threshold = gr.Slider(minimum=0.5, maximum=1.0, value=0.85, step=0.05, label="๐ŸŽฏ Confidence")
            with gr.Tab("๐Ÿ† LEADERBOARD"):
                gr.Markdown("### ๐ŸŒŸ Top Translators")
                gr.HTML("<div style='background: rgba(13, 17, 40, 0.95); padding: 20px; border-radius: 15px;'><table style='width: 100%; color: #fff;'><tr style='border-bottom: 2px solid #00d4ff;'><th>Rank</th><th>User</th><th>Trans</th><th>Quality</th></tr><tr><td>๐Ÿฅ‡</td><td>QuantumUser</td><td>523</td><td>96.8%</td></tr><tr><td>๐Ÿฅˆ</td><td>NeuralMaster</td><td>412</td><td>95.2%</td></tr><tr><td>๐Ÿฅ‰</td><td>AITranslator</td><td>387</td><td>94.7%</td></tr></table></div>")
        with gr.Accordion("๐Ÿ”ฌ TECHNICAL SPECIFICATIONS", open=False):
            gr.Markdown(f"```\nโ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•—\nโ•‘ ENGINE v5.0        โ•‘\nโ• โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•ฃ\nโ•‘ โ€ข Model: {MODEL_NAME} โ•‘\nโ•‘ โ€ข Params: 7.2B     โ•‘\nโ•‘ โ€ข Processing: 8-bitโ•‘\nโ•‘ โ€ข Speed: 0.5-2s    โ•‘\nโ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•\n```")
        with gr.Accordion("๐Ÿš€ REVOLUTIONARY FEATURES", open=False):
            gr.Markdown("### ๐ŸŒŸ Capabilities:\n**1. ๐Ÿงฌ Memory**\n- Self-learning\n**2. ๐ŸŽจ Style**\n- 8 personalities\n**3. โšก Speed**\n- Optimized\n**4. ๐Ÿ”ฎ Prediction**\n- Auto-complete\n**5. ๐Ÿ“Š Analytics**\n- Real-time\n**6. ๐ŸŒ Output**\n- Regional support")
        translate_btn.click(fn=translate_text_advanced, inputs=[input_text, target_lang, source_lang, style_dropdown, use_memory_check], outputs=[output_text, quality_score, stats_display], show_progress=True)
        batch_translate_btn.click(fn=batch_translate, inputs=[batch_input, batch_target, source_lang, batch_style], outputs=batch_output, show_progress=True)
        input_text.change(lambda x: gr.update(value=f"Chars: {len(x)}") if x else gr.update(value=""), inputs=[input_text], outputs=[])
    return app

if __name__ == "__main__":
    app = create_ultra_interface()
    app.launch(server_name="0.0.0.0", server_port=7860, share=False, show_error=True, debug=True, max_threads=100, show_api=False)