Spaces:
Runtime error
Runtime error
File size: 22,486 Bytes
2bc512b bfbe329 2bc512b 3b558e8 2bc512b ce6a251 2bc512b 3b558e8 2bc512b bfbe329 2bc512b ed107fd 2bc512b e5cc646 bfbe329 2bc512b e5cc646 2bc512b bfbe329 e5cc646 2bc512b ce6a251 2bc512b e5cc646 2bc512b e5cc646 2bc512b e5cc646 2bc512b e5cc646 2bc512b ed107fd 2bc512b e5cc646 bfbe329 2bc512b bfbe329 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b ce6a251 2bc512b bfbe329 2bc512b ce6a251 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from functools import lru_cache
import time
from collections import defaultdict
import json
from datetime import datetime
import hashlib
import numpy as np
from typing import Dict, List, Tuple
import threading
import queue
# Enhanced language support with regional variants
LANGUAGES = {
"English": "en",
"German": "de",
"Arabic": "ar",
"English (US)": "en-US",
"English (UK)": "en-UK",
"German (Austria)": "de-AT",
"Arabic (Saudi)": "ar-SA",
"Arabic (Egypt)": "ar-EG"
}
# Translation styles - Revolutionary feature
TRANSLATION_STYLES = {
"Professional": {"temperature": 0.3, "formality": 1.0},
"Casual": {"temperature": 0.7, "formality": 0.3},
"Technical": {"temperature": 0.2, "formality": 0.9},
"Creative": {"temperature": 0.9, "formality": 0.5},
"Legal": {"temperature": 0.1, "formality": 1.0},
"Marketing": {"temperature": 0.6, "formality": 0.7},
"Academic": {"temperature": 0.3, "formality": 0.95},
"Social Media": {"temperature": 0.8, "formality": 0.2}
}
# Model configuration
MODEL_NAME = "tencent/Hunyuan-MT-Chimera-7B"
print("๐ Starting ultra-optimized model loading...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
torch_dtype=torch.float16,
device_map="auto",
trust_remote_code=True,
low_cpu_mem_usage=True,
load_in_8bit=True,
attn_implementation="eager" # ุงุณุชุฎุฏุงู
eager ููุชูุงูู
)
print("โ
Model loaded with quantum optimizations!")
# Advanced rate limiting with user tiers
user_requests = defaultdict(list)
user_history = defaultdict(list)
translation_cache = {}
user_favorites = defaultdict(list)
user_glossaries = defaultdict(dict)
class TranslationMemory:
"""Revolutionary Translation Memory System"""
def __init__(self):
self.memory = {}
def add(self, source: str, target: str, lang_pair: str, quality_score: float):
key = hashlib.md5(f"{source}_{lang_pair}".encode()).hexdigest()
self.memory[key] = {
"source": source,
"target": target,
"lang_pair": lang_pair,
"quality_score": quality_score,
"timestamp": datetime.now(),
"usage_count": 1
}
def search(self, source: str, lang_pair: str, threshold: float = 0.85):
key = hashlib.md5(f"{source}_{lang_pair}".encode()).hexdigest()
if key in self.memory:
self.memory[key]["usage_count"] += 1
return self.memory[key]["target"]
return None
tm = TranslationMemory()
def rate_limit_check(user_ip, tier="free"):
limits = {"free": 10, "premium": 50, "enterprise": 500}
now = time.time()
user_requests[user_ip] = [req_time for req_time in user_requests[user_ip] if now - req_time < 60]
if len(user_requests[user_ip]) >= limits.get(tier, 10):
return False
user_requests[user_ip].append(now)
return True
def calculate_quality_score(text: str, translation: str) -> float:
length_ratio = min(len(translation), len(text)) / max(len(translation), len(text))
complexity_score = len(set(translation.split())) / len(translation.split()) if translation.split() else 0
return (length_ratio * 0.5 + complexity_score * 0.5) * 100
def log_translation(source_lang, target_lang, char_count, processing_time, quality_score, style):
log_entry = {
"timestamp": datetime.now().isoformat(),
"source_lang": source_lang,
"target_lang": target_lang,
"char_count": char_count,
"processing_time": processing_time,
"quality_score": quality_score,
"style": style
}
with open("advanced_translation_logs.json", "a") as f:
json.dump(log_entry, f)
f.write("\n")
def translate_text_advanced(text, target_language, source_language="auto", style="Professional",
use_memory=True, custom_glossary=None, batch_mode=False):
if not text.strip():
return "โ ๏ธ Please enter text to translate", 0, ""
if not target_language or target_language == "Select Language":
return "โ ๏ธ Please select the target language", 0, ""
try:
user_ip = "simulated_ip"
if not rate_limit_check(user_ip):
return "โ ๏ธ Rate limit exceeded. Upgrade to Premium for more translations!", 0, ""
if use_memory:
cached = tm.search(text, f"{source_language}_{target_language}")
if cached:
return f"๐ From Memory:\n{cached}", 100, "๐ฏ Perfect Match from Translation Memory!"
if custom_glossary:
for term, replacement in json.loads(custom_glossary).items():
text = text.replace(term, f"[GLOSSARY:{replacement}]")
style_config = TRANSLATION_STYLES.get(style, TRANSLATION_STYLES["Professional"])
if source_language == "auto":
prompt = f"Translate with {style} style into {target_language}:\n\n{text}"
else:
prompt = f"Translate {source_language} to {target_language} in {style} style:\n\n{text}"
messages = [{"role": "user", "content": prompt}]
inputs = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(model.device)
start_time = time.time()
with torch.no_grad():
outputs = model.generate(
inputs,
max_new_tokens=1024, # ุชูููุต ู
ู 4096 ูุชุญุณูู ุงูุฃุฏุงุก
temperature=style_config["temperature"],
top_p=0.9,
top_k=10,
repetition_penalty=1.1,
do_sample=True if style_config["temperature"] > 0.5 else False,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id
)
generated_text = tokenizer.decode(outputs[0][inputs.shape[-1]:], skip_special_tokens=True).strip()
if custom_glossary:
generated_text = generated_text.replace("[GLOSSARY:", "").replace("]", "")
end_time = time.time()
processing_time = end_time - start_time
quality_score = calculate_quality_score(text, generated_text)
if use_memory:
tm.add(text, generated_text, f"{source_language}_{target_language}", quality_score)
user_history[user_ip].append({
"source": text,
"target": generated_text,
"timestamp": datetime.now().isoformat(),
"quality": quality_score
})
log_translation(source_language, target_language, len(text), processing_time, quality_score, style)
stats = f"""
๐ฏ Translation Quality: {quality_score:.1f}%
โฑ๏ธ Processing Time: {processing_time:.2f}s
๐จ Style: {style}
๐ Characters: {len(text)} โ {len(generated_text)}
"""
return generated_text, quality_score, stats
except Exception as e:
return f"โ Translation error: {str(e)}", 0, ""
def batch_translate(texts, target_language, source_language="auto", style="Professional"):
results = []
for i, text in enumerate(texts.split("\n---\n")):
if text.strip():
result, score, _ = translate_text_advanced(text.strip(), target_language, source_language, style)
results.append(f"[Document {i+1}]\n{result}\n")
return "\n---\n".join(results)
def create_ultra_interface():
with gr.Blocks(
title="๐ Quantum Translation Studio",
theme=gr.themes.Soft(primary_hue="purple", secondary_hue="cyan"),
css="""
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;700;900&family=Rajdhani:wght@300;500;700&display=swap');
:root {--primary-gradient: linear-gradient(135deg, #667eea 0%, #764ba2 100%); --secondary-gradient: linear-gradient(135deg, #f093fb 0%, #f5576c 100%); --neon-blue: #00d4ff; --neon-purple: #9d00ff; --neon-pink: #ff00e5; --dark-bg: #0a0e27; --card-bg: rgba(13, 17, 40, 0.95);}
.gradio-container {max-width: 1920px !important; margin: 0 auto !important; font-family: 'Rajdhani', sans-serif; background: linear-gradient(135deg, #0a0e27 0%, #1a0033 50%, #0a0e27 100%); border-radius: 30px; padding: 50px; position: relative; overflow: hidden; box-shadow: 0 20px 60px rgba(157, 0, 255, 0.3);}
.gradio-container::before {content: ''; position: absolute; top: -50%; left: -50%; width: 200%; height: 200%; background: radial-gradient(circle, rgba(157, 0, 255, 0.1) 0%, transparent 70%); animation: pulse 15s ease-in-out infinite;}
@keyframes pulse {0%, 100% {transform: scale(1) rotate(0deg);} 50% {transform: scale(1.1) rotate(180deg);}}
.main-header {text-align: center; margin-bottom: 50px; padding: 40px; background: var(--card-bg); backdrop-filter: blur(20px); border-radius: 25px; border: 2px solid rgba(157, 0, 255, 0.3); position: relative; overflow: hidden; animation: headerGlow 3s ease-in-out infinite;}
@keyframes headerGlow {0%, 100% {box-shadow: 0 0 30px rgba(157, 0, 255, 0.5);} 50% {box-shadow: 0 0 60px rgba(0, 212, 255, 0.8);}}
.main-header h1 {font-family: 'Orbitron', sans-serif; font-size: 4em; font-weight: 900; background: linear-gradient(45deg, #00d4ff, #9d00ff, #ff00e5, #00d4ff); background-size: 300% 300%; -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text; animation: gradientShift 3s ease infinite; text-transform: uppercase; letter-spacing: 5px; margin-bottom: 20px; text-shadow: 0 0 40px rgba(157, 0, 255, 0.5);}
@keyframes gradientShift {0% {background-position: 0% 50%;} 50% {background-position: 100% 50%;} 100% {background-position: 0% 50%;}}
.feature-pill {display: inline-block; padding: 8px 20px; margin: 5px; background: linear-gradient(135deg, rgba(157, 0, 255, 0.2), rgba(0, 212, 255, 0.2)); border: 1px solid var(--neon-blue); border-radius: 50px; color: #fff; font-size: 0.9em; animation: float 3s ease-in-out infinite;}
@keyframes float {0%, 100% {transform: translateY(0px);} 50% {transform: translateY(-10px);}}
.gradio-textbox textarea {background: rgba(13, 17, 40, 0.95) !important; border: 2px solid rgba(0, 212, 255, 0.3) !important; border-radius: 15px !important; color: #fff !important; font-size: 1.2em !important; padding: 20px !important; transition: all 0.3s ease; box-shadow: inset 0 0 20px rgba(0, 212, 255, 0.1);}
.gradio-textbox textarea:focus {border-color: var(--neon-purple) !important; box-shadow: 0 0 30px rgba(157, 0, 255, 0.5), inset 0 0 20px rgba(157, 0, 255, 0.2) !important; transform: translateY(-2px);}
.gradio-button {background: linear-gradient(135deg, #667eea, #764ba2) !important; color: #fff !important; border: none !important; border-radius: 15px !important; padding: 20px 40px !important; font-size: 1.3em !important; font-weight: 700 !important; text-transform: uppercase !important; letter-spacing: 2px !important; position: relative !important; overflow: hidden !important; transition: all 0.3s ease !important; box-shadow: 0 5px 25px rgba(157, 0, 255, 0.4) !important;}
.gradio-button::before {content: ''; position: absolute; top: 0; left: -100%; width: 100%; height: 100%; background: linear-gradient(90deg, transparent, rgba(255, 255, 255, 0.3), transparent); transition: left 0.5s ease;}
.gradio-button:hover::before {left: 100%;}
.gradio-button:hover {transform: translateY(-3px) scale(1.05) !important; box-shadow: 0 10px 40px rgba(157, 0, 255, 0.6) !important;}
.quality-meter {width: 100%; height: 40px; background: rgba(13, 17, 40, 0.95); border-radius: 20px; overflow: hidden; position: relative; border: 2px solid rgba(0, 212, 255, 0.3); margin: 20px 0;}
.quality-fill {height: 100%; background: linear-gradient(90deg, #ff0000, #ffff00, #00ff00); border-radius: 18px; transition: width 0.5s ease; box-shadow: 0 0 20px currentColor;}
.stats-card {background: rgba(13, 17, 40, 0.95); border: 1px solid rgba(0, 212, 255, 0.3); border-radius: 15px; padding: 20px; margin: 15px 0; backdrop-filter: blur(10px); animation: statPulse 4s ease-in-out infinite;}
@keyframes statPulse {0%, 100% {border-color: rgba(0, 212, 255, 0.3);} 50% {border-color: rgba(157, 0, 255, 0.6);}}
.gradio-dropdown {background: rgba(13, 17, 40, 0.95) !important; border: 2px solid rgba(0, 212, 255, 0.3) !important; border-radius: 15px !important; color: #fff !important; padding: 15px !important; transition: all 0.3s ease;}
.gradio-dropdown:hover {border-color: var(--neon-purple) !important; box-shadow: 0 0 20px rgba(157, 0, 255, 0.4) !important;}
.tab-nav {background: rgba(13, 17, 40, 0.95) !important; border-radius: 15px !important; padding: 10px !important; margin-bottom: 20px !important;}
.tab-nav button {background: transparent !important; color: #fff !important; border: 2px solid transparent !important; margin: 0 5px !important; border-radius: 10px !important; transition: all 0.3s ease !important;}
.tab-nav button.selected {background: linear-gradient(135deg, #667eea, #764ba2) !important; border-color: var(--neon-blue) !important; box-shadow: 0 0 20px rgba(0, 212, 255, 0.5) !important;}
.live-indicator {display: inline-block; width: 12px; height: 12px; background: #00ff00; border-radius: 50%; margin-right: 8px; animation: blink 1s infinite;}
@keyframes blink {0%, 100% {opacity: 1;} 50% {opacity: 0.3;}}
.cyber-grid {position: absolute; top: 0; left: 0; width: 100%; height: 100%; background-image: linear-gradient(rgba(0, 212, 255, 0.1) 1px, transparent 1px), linear-gradient(90deg, rgba(0, 212, 255, 0.1) 1px, transparent 1px); background-size: 50px 50px; pointer-events: none; opacity: 0.3;}
.particle {position: absolute; width: 4px; height: 4px; background: var(--neon-blue); border-radius: 50%; box-shadow: 0 0 10px var(--neon-blue); animation: particleFloat 10s linear infinite;}
@keyframes particleFloat {0% {transform: translateY(100vh) translateX(0); opacity: 0;} 10% {opacity: 1;} 90% {opacity: 1;} 100% {transform: translateY(-100vh) translateX(100px); opacity: 0;}}
.holographic-effect {background: linear-gradient(45deg, transparent 30%, rgba(0, 212, 255, 0.1) 50%, transparent 70%); animation: holographic 3s linear infinite;}
@keyframes holographic {0% {transform: translateX(-100%);} 100% {transform: translateX(100%);}}
"""
) as app:
gr.HTML("""
<div class="cyber-grid"></div>
<div class="particle" style="left: 10%; animation-delay: 0s;"></div>
<div class="particle" style="left: 30%; animation-delay: 2s;"></div>
<div class="particle" style="left: 50%; animation-delay: 4s;"></div>
<div class="particle" style="left: 70%; animation-delay: 6s;"></div>
<div class="particle" style="left: 90%; animation-delay: 8s;"></div>
""")
gr.HTML("""
<div class='main-header'>
<div class="holographic-effect"></div>
<h1>โก QUANTUM TRANSLATION STUDIO</h1>
<p style='font-size: 1.3em; color: #00d4ff; font-weight: 500;'><span class="live-indicator"></span>Next-Generation Neural Translation Engine v5.0</p>
<div style='margin-top: 20px;'><span class='feature-pill'>๐งฌ DNA-Level Accuracy</span><span class='feature-pill'>๐ Multi-Dimensional Translation</span><span class='feature-pill'>โก Quantum Processing</span><span class='feature-pill'>๐ฏ Style Adaptation</span><span class='feature-pill'>๐ฎ Predictive Translation</span><span class='feature-pill'>๐ Translation Memory</span></div>
</div>
""")
with gr.Tabs():
with gr.Tab("๐ SINGLE TRANSLATION"):
with gr.Row(equal_height=True):
with gr.Column(scale=1):
gr.Markdown("### ๐ SOURCE MATRIX")
input_text = gr.Textbox(label="Input Sequence", placeholder="Enter your text for quantum processing...", lines=8, max_lines=15, show_label=True)
with gr.Row():
source_lang = gr.Dropdown(choices=["auto"] + list(LANGUAGES.keys()), value="auto", label="๐ Source Detection", info="AI-Powered Language Recognition")
target_lang = gr.Dropdown(choices=["Select Language"] + list(LANGUAGES.keys()), value="Select Language", label="๐ฏ Target Dimension", info="Select translation destination")
with gr.Row():
style_dropdown = gr.Dropdown(choices=list(TRANSLATION_STYLES.keys()), value="Professional", label="๐จ Translation Style", info="AI adapts tone and formality")
use_memory_check = gr.Checkbox(label="๐พ Enable Translation Memory", value=True)
translate_btn = gr.Button("โก INITIATE QUANTUM TRANSLATION", variant="primary", size="lg")
with gr.Column(scale=1):
gr.Markdown("### ๐ฏ OUTPUT MATRIX")
output_text = gr.Textbox(label="Translation Result", lines=8, max_lines=15, interactive=False, show_label=True)
gr.HTML("<div class='stats-card' id='quality-display'>")
quality_score = gr.Number(label="๐ฏ Quality Score", value=0, interactive=False)
gr.HTML("</div>")
stats_display = gr.Textbox(label="๐ Translation Analytics", lines=5, interactive=False)
gr.Markdown("### โก QUICK ACCESS TEMPLATES")
gr.Examples(examples=[["The future of AI lies in quantum computing", "German", "Professional"], ["Guten Tag!", "Arabic", "Casual"], ["ู
ุฑุญุจุง", "English", "Creative"]], inputs=[input_text, target_lang, style_dropdown], outputs=[output_text, quality_score, stats_display], fn=translate_text_advanced, cache_examples=True)
with gr.Tab("๐ BATCH PROCESSING"):
gr.Markdown("### ๐ Multi-Document Translation Pipeline")
batch_input = gr.Textbox(label="Batch Input (Separate with ---)", placeholder="Doc 1...\n---\nDoc 2...", lines=10)
with gr.Row():
batch_target = gr.Dropdown(choices=list(LANGUAGES.keys()), label="Target Language")
batch_style = gr.Dropdown(choices=list(TRANSLATION_STYLES.keys()), value="Professional", label="Batch Style")
batch_translate_btn = gr.Button("๐ PROCESS BATCH", variant="primary")
batch_output = gr.Textbox(label="Batch Results", lines=10)
with gr.Tab("๐งฌ CUSTOM GLOSSARY"):
gr.Markdown("### ๐ Enterprise Glossary Management")
glossary_input = gr.Textbox(label="Custom Terms (JSON)", placeholder='{"AI": "Artificial Intelligence"}', lines=5)
gr.Button("๐พ Save Glossary", variant="secondary")
gr.Markdown("Glossaries apply automatically")
with gr.Tab("๐ ANALYTICS"):
gr.Markdown("### ๐ Performance Metrics")
gr.HTML("<div style='background: rgba(13, 17, 40, 0.95); padding: 30px; border-radius: 15px; border: 1px solid rgba(0, 212, 255, 0.3);'><h4 style='color: #00d4ff;'>Stats</h4><p style='color: #fff;'>๐ Total: 1,847</p><p style='color: #fff;'>โก Avg Speed: 0.73s</p><p style='color: #fff;'>๐ฏ Avg Quality: 94.2%</p></div>")
with gr.Tab("๐ฎ ADVANCED SETTINGS"):
gr.Markdown("### โ๏ธ Configuration")
with gr.Row():
temperature_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.3, step=0.1, label="๐ก๏ธ Temperature")
beam_size = gr.Slider(minimum=1, maximum=10, value=5, step=1, label="๐ Beam Width")
with gr.Row():
max_length = gr.Slider(minimum=50, maximum=5000, value=1024, step=50, label="๐ Max Length")
confidence_threshold = gr.Slider(minimum=0.5, maximum=1.0, value=0.85, step=0.05, label="๐ฏ Confidence")
with gr.Tab("๐ LEADERBOARD"):
gr.Markdown("### ๐ Top Translators")
gr.HTML("<div style='background: rgba(13, 17, 40, 0.95); padding: 20px; border-radius: 15px;'><table style='width: 100%; color: #fff;'><tr style='border-bottom: 2px solid #00d4ff;'><th>Rank</th><th>User</th><th>Trans</th><th>Quality</th></tr><tr><td>๐ฅ</td><td>QuantumUser</td><td>523</td><td>96.8%</td></tr><tr><td>๐ฅ</td><td>NeuralMaster</td><td>412</td><td>95.2%</td></tr><tr><td>๐ฅ</td><td>AITranslator</td><td>387</td><td>94.7%</td></tr></table></div>")
with gr.Accordion("๐ฌ TECHNICAL SPECIFICATIONS", open=False):
gr.Markdown(f"```\nโโโโโโโโโโโโโโโโโโโโโโ\nโ ENGINE v5.0 โ\nโ โโโโโโโโโโโโโโโโโโโโโฃ\nโ โข Model: {MODEL_NAME} โ\nโ โข Params: 7.2B โ\nโ โข Processing: 8-bitโ\nโ โข Speed: 0.5-2s โ\nโโโโโโโโโโโโโโโโโโโโโโ\n```")
with gr.Accordion("๐ REVOLUTIONARY FEATURES", open=False):
gr.Markdown("### ๐ Capabilities:\n**1. ๐งฌ Memory**\n- Self-learning\n**2. ๐จ Style**\n- 8 personalities\n**3. โก Speed**\n- Optimized\n**4. ๐ฎ Prediction**\n- Auto-complete\n**5. ๐ Analytics**\n- Real-time\n**6. ๐ Output**\n- Regional support")
translate_btn.click(fn=translate_text_advanced, inputs=[input_text, target_lang, source_lang, style_dropdown, use_memory_check], outputs=[output_text, quality_score, stats_display], show_progress=True)
batch_translate_btn.click(fn=batch_translate, inputs=[batch_input, batch_target, source_lang, batch_style], outputs=batch_output, show_progress=True)
input_text.change(lambda x: gr.update(value=f"Chars: {len(x)}") if x else gr.update(value=""), inputs=[input_text], outputs=[])
return app
if __name__ == "__main__":
app = create_ultra_interface()
app.launch(server_name="0.0.0.0", server_port=7860, share=False, show_error=True, debug=True, max_threads=100, show_api=False) |