AIEcosystem commited on
Commit
6aa3b68
·
verified ·
1 Parent(s): 6ca3a12

Update src/streamlit_app.py

Browse files
Files changed (1) hide show
  1. src/streamlit_app.py +310 -38
src/streamlit_app.py CHANGED
@@ -1,40 +1,312 @@
1
- import altair as alt
2
- import numpy as np
3
- import pandas as pd
4
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
- """
7
- # Welcome to Streamlit!
8
-
9
- Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
10
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
11
- forums](https://discuss.streamlit.io).
12
-
13
- In the meantime, below is an example of what you can do with just a few lines of code:
14
- """
15
-
16
- num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
17
- num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
18
-
19
- indices = np.linspace(0, 1, num_points)
20
- theta = 2 * np.pi * num_turns * indices
21
- radius = indices
22
-
23
- x = radius * np.cos(theta)
24
- y = radius * np.sin(theta)
25
-
26
- df = pd.DataFrame({
27
- "x": x,
28
- "y": y,
29
- "idx": indices,
30
- "rand": np.random.randn(num_points),
31
- })
32
-
33
- st.altair_chart(alt.Chart(df, height=700, width=700)
34
- .mark_point(filled=True)
35
- .encode(
36
- x=alt.X("x", axis=None),
37
- y=alt.Y("y", axis=None),
38
- color=alt.Color("idx", legend=None, scale=alt.Scale()),
39
- size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
40
- ))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.environ['HF_HOME'] = '/tmp'
3
+ import time
4
  import streamlit as st
5
+ import pandas as pd
6
+ import io
7
+ import plotly.express as px
8
+ import zipfile
9
+ import json
10
+ from cryptography.fernet import Fernet
11
+ from streamlit_extras.stylable_container import stylable_container
12
+ from typing import Optional
13
+ from gliner import GLiNER
14
+ from comet_ml import Experiment
15
+
16
+
17
+
18
+ st.markdown(
19
+ """
20
+ <style>
21
+ /* Main app background and text color */
22
+ .stApp {
23
+ background-color: #F3E5F5; /* A very light purple */
24
+ color: #1A0A26; /* Dark purple for the text */
25
+ }
26
+ /* Sidebar background color */
27
+ .css-1d36184 {
28
+ background-color: #D1C4E9; /* A medium light purple */
29
+ secondary-background-color: #D1C4E9;
30
+ }
31
+ /* Expander background color and header */
32
+ .streamlit-expanderContent, .streamlit-expanderHeader {
33
+ background-color: #F3E5F5;
34
+ }
35
+ /* Text Area background and text color */
36
+ .stTextArea textarea {
37
+ background-color: #B39DDB; /* A slightly darker medium purple */
38
+ color: #1A0A26; /* Dark purple for text */
39
+ }
40
+ /* Button background and text color */
41
+ .stButton > button {
42
+ background-color: #B39DDB;
43
+ color: #1A0A26;
44
+ }
45
+ /* Warning box background and text color */
46
+ .stAlert.st-warning {
47
+ background-color: #9575CD; /* A medium-dark purple for the warning box */
48
+ color: #1A0A26;
49
+ }
50
+ /* Success box background and text color */
51
+ .stAlert.st-success {
52
+ background-color: #9575CD; /* A medium-dark purple for the success box */
53
+ color: #1A0A26;
54
+ }
55
+ </style>
56
+ """,
57
+ unsafe_allow_html=True
58
+ )
59
+
60
+
61
+
62
+
63
+ # --- Page Configuration and UI Elements ---
64
+ st.set_page_config(layout="wide", page_title="Named Entity Recognition App")
65
+ st.subheader("EntityFinance", divider="violet")
66
+ st.link_button("by nlpblogs", "https://nlpblogs.com", type="tertiary")
67
+ expander = st.expander("**Important notes**")
68
+ expander.write("""**Named Entities:** This EntityFinance web app predicts fourteen (14) labels: 'person', 'organization', 'location', 'date', 'time', 'event', 'title', 'product', 'law', 'policy', 'work of art', 'geopolitical entity', 'number', 'cause of death',
69
+ 'weapon', 'vehicle', 'facility', 'temporal expression'
70
+
71
+ Results are presented in easy-to-read tables, visualized in an interactive tree map, pie chart and bar chart, and are available for download along with a Glossary of tags.
72
+
73
+ **How to Use:** Type or paste your text into the text area below, then press Ctrl + Enter. Click the 'Results' button to extract and tag entities in your text data.
74
+
75
+ **Usage Limits:** You can request results unlimited times for one (1) month.
76
+
77
+ **Supported Languages:** English
78
+
79
+ **Technical issues:** If your connection times out, please refresh the page or reopen the app's URL.
80
+
81
+ For any errors or inquiries, please contact us at info@nlpblogs.com""")
82
+
83
+ with st.sidebar:
84
+ st.write("Use the following code to embed the MediaTagger web app on your website. Feel free to adjust the width and height values to fit your page.")
85
+ code = '''
86
+ <iframe
87
+ src="https://aiecosystem-mediatagger.hf.space"
88
+ frameborder="0"
89
+ width="850"
90
+ height="450"
91
+ ></iframe>
92
+
93
+ '''
94
+ st.code(code, language="html")
95
+ st.text("")
96
+ st.text("")
97
+ st.divider()
98
+ st.subheader("🚀 Ready to build your own AI Web App?", divider="violet")
99
+ st.link_button("AI Web App Builder", " https://nlpblogs.com/custom-web-app-development/", type="primary")
100
+
101
+ # --- Comet ML Setup ---
102
+ COMET_API_KEY = os.environ.get("COMET_API_KEY")
103
+ COMET_WORKSPACE = os.environ.get("COMET_WORKSPACE")
104
+ COMET_PROJECT_NAME = os.environ.get("COMET_PROJECT_NAME")
105
+ comet_initialized = bool(COMET_API_KEY and COMET_WORKSPACE and COMET_PROJECT_NAME)
106
+
107
+ if not comet_initialized:
108
+ st.warning("Comet ML not initialized. Check environment variables.")
109
+
110
+ # --- Label Definitions ---
111
+ labels = [
112
+ "Monetary_value",
113
+ "Financial_instrument",
114
+ "Company_identifier",
115
+ "Financial_event",
116
+ "Financial_metric",
117
+ "Regulatory_entity",
118
+ "Financial_document",
119
+ "Person",
120
+ "Product",
121
+ "Service",
122
+
123
+ "Organization",
124
+ "Location",
125
+ "Date",
126
+ "Time"
127
+ ]
128
+
129
+
130
+ # Corrected mapping dictionary
131
+
132
+ # Create a mapping dictionary for labels to categories
133
+ category_mapping = {
134
+ "People & Groups": [ "Person",
135
+ "Organization",
136
+ "Regulatory_entity"],
137
+ "Financial & Transactional": [ "Monetary_value",
138
+ "Financial_instrument",
139
+ "Company_identifier",
140
+ "Financial_event",
141
+ "Financial_metric", "Product", "Service"],
142
+ "Temporal": ["Date", "Time"],
143
+ "Locations": ["location"],
144
+ "Documents & Context": ["Financial_document"]
145
+ }
146
+
147
+
148
+
149
+
150
+
151
+ # --- Model Loading ---
152
+ @st.cache_resource
153
+ def load_ner_model():
154
+ """Loads the GLiNER model and caches it."""
155
+ try:
156
+ return GLiNER.from_pretrained("knowledgator/gliner-multitask-v1.0", nested_ner=True, num_gen_sequences=2, gen_constraints= labels)
157
+ except Exception as e:
158
+ st.error(f"Failed to load NER model. Please check your internet connection or model availability: {e}")
159
+ st.stop()
160
+ model = load_ner_model()
161
+
162
+ # Flatten the mapping to a single dictionary
163
+ reverse_category_mapping = {label: category for category, label_list in category_mapping.items() for label in label_list}
164
+
165
+ # --- Text Input and Clear Button ---
166
+ text = st.text_area("Type or paste your text below, and then press Ctrl + Enter", height=250, key='my_text_area')
167
+
168
+ def clear_text():
169
+ """Clears the text area."""
170
+ st.session_state['my_text_area'] = ""
171
+
172
+ st.button("Clear text", on_click=clear_text)
173
+
174
+
175
+ # --- Results Section ---
176
+ if st.button("Results"):
177
+ start_time = time.time()
178
+ if not text.strip():
179
+ st.warning("Please enter some text to extract entities.")
180
+ else:
181
+ with st.spinner("Extracting entities...", show_time=True):
182
+ entities = model.predict_entities(text, labels)
183
+ df = pd.DataFrame(entities)
184
+
185
+ if not df.empty:
186
+ df['category'] = df['label'].map(reverse_category_mapping)
187
+ if comet_initialized:
188
+ experiment = Experiment(
189
+ api_key=COMET_API_KEY,
190
+ workspace=COMET_WORKSPACE,
191
+ project_name=COMET_PROJECT_NAME,
192
+ )
193
+ experiment.log_parameter("input_text", text)
194
+ experiment.log_table("predicted_entities", df)
195
+
196
+ st.subheader("Grouped Entities by Category", divider = "violet")
197
+
198
+ # Create tabs for each category
199
+ category_names = sorted(list(category_mapping.keys()))
200
+ category_tabs = st.tabs(category_names)
201
+
202
+ for i, category_name in enumerate(category_names):
203
+ with category_tabs[i]:
204
+ df_category_filtered = df[df['category'] == category_name]
205
+ if not df_category_filtered.empty:
206
+ st.dataframe(df_category_filtered.drop(columns=['category']), use_container_width=True)
207
+ else:
208
+ st.info(f"No entities found for the '{category_name}' category.")
209
+
210
+
211
+
212
+ with st.expander("See Glossary of tags"):
213
+ st.write('''
214
+ - **text**: ['entity extracted from your text data']
215
+ - **score**: ['accuracy score; how accurately a tag has been assigned to a given entity']
216
+ - **label**: ['label (tag) assigned to a given extracted entity']
217
+ - **start**: ['index of the start of the corresponding entity']
218
+ - **end**: ['index of the end of the corresponding entity']
219
+ ''')
220
+ st.divider()
221
+
222
+ # Tree map
223
+ st.subheader("Tree map", divider = "violet")
224
+ fig_treemap = px.treemap(df, path=[px.Constant("all"), 'category', 'label', 'text'], values='score', color='category')
225
+ fig_treemap.update_layout(margin=dict(t=50, l=25, r=25, b=25), paper_bgcolor='#F3E5F5', plot_bgcolor='#F3E5F5')
226
+ st.plotly_chart(fig_treemap)
227
+
228
+ # Pie and Bar charts
229
+ grouped_counts = df['category'].value_counts().reset_index()
230
+ grouped_counts.columns = ['category', 'count']
231
+ col1, col2 = st.columns(2)
232
+
233
+ with col1:
234
+ st.subheader("Pie chart", divider = "violet")
235
+ fig_pie = px.pie(grouped_counts, values='count', names='category', hover_data=['count'], labels={'count': 'count'}, title='Percentage of predicted categories')
236
+ fig_pie.update_traces(textposition='inside', textinfo='percent+label')
237
+ fig_pie.update_layout(
238
+ paper_bgcolor='#F3E5F5',
239
+ plot_bgcolor='#F3E5F5'
240
+ )
241
+ st.plotly_chart(fig_pie)
242
+
243
+
244
+
245
 
246
+ with col2:
247
+ st.subheader("Bar chart", divider = "violet")
248
+ fig_bar = px.bar(grouped_counts, x="count", y="category", color="category", text_auto=True, title='Occurrences of predicted categories')
249
+ fig_bar.update_layout( # Changed from fig_pie to fig_bar
250
+ paper_bgcolor='#F3E5F5',
251
+ plot_bgcolor='#F3E5F5'
252
+ )
253
+ st.plotly_chart(fig_bar)
254
+
255
+ # Most Frequent Entities
256
+ st.subheader("Most Frequent Entities", divider="violet")
257
+ word_counts = df['text'].value_counts().reset_index()
258
+ word_counts.columns = ['Entity', 'Count']
259
+ repeating_entities = word_counts[word_counts['Count'] > 1]
260
+ if not repeating_entities.empty:
261
+ st.dataframe(repeating_entities, use_container_width=True)
262
+ fig_repeating_bar = px.bar(repeating_entities, x='Entity', y='Count', color='Entity')
263
+ fig_repeating_bar.update_layout(xaxis={'categoryorder': 'total descending'},
264
+ paper_bgcolor='#F3E5F5',
265
+ plot_bgcolor='#F3E5F5')
266
+ st.plotly_chart(fig_repeating_bar)
267
+ else:
268
+ st.warning("No entities were found that occur more than once.")
269
+
270
+ # Download Section
271
+ st.divider()
272
+
273
+ dfa = pd.DataFrame(
274
+ data={
275
+ 'Column Name': ['text', 'label', 'score', 'start', 'end'],
276
+ 'Description': [
277
+ 'entity extracted from your text data',
278
+ 'label (tag) assigned to a given extracted entity',
279
+ 'accuracy score; how accurately a tag has been assigned to a given entity',
280
+ 'index of the start of the corresponding entity',
281
+ 'index of the end of the corresponding entity',
282
+
283
+ ]
284
+ }
285
+ )
286
+ buf = io.BytesIO()
287
+ with zipfile.ZipFile(buf, "w") as myzip:
288
+ myzip.writestr("Summary of the results.csv", df.to_csv(index=False))
289
+ myzip.writestr("Glossary of tags.csv", dfa.to_csv(index=False))
290
+
291
+ with stylable_container(
292
+ key="download_button",
293
+ css_styles="""button { background-color: red; border: 1px solid black; padding: 5px; color: white; }""",
294
+ ):
295
+ st.download_button(
296
+ label="Download results and glossary (zip)",
297
+ data=buf.getvalue(),
298
+ file_name="nlpblogs_results.zip",
299
+ mime="application/zip",
300
+ )
301
+
302
+ if comet_initialized:
303
+ experiment.log_figure(figure=fig_treemap, figure_name="entity_treemap_categories")
304
+ experiment.end()
305
+ else: # If df is empty
306
+ st.warning("No entities were found in the provided text.")
307
+
308
+ end_time = time.time()
309
+ elapsed_time = end_time - start_time
310
+ st.text("")
311
+ st.text("")
312
+ st.info(f"Results processed in **{elapsed_time:.2f} seconds**.")