spacepxl's picture
Upload train_sd.py
550b01c verified
import os
import gc
import argparse
import datetime
from io import BytesIO
from glob import glob
from tqdm.auto import tqdm
from PIL import Image
import matplotlib.pyplot as plt
import torch
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import Dataset, DataLoader
from torchvision.transforms import v2, InterpolationMode
import datasets
import bitsandbytes as bnb
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, UNet2DConditionModel
def parse_args():
parser = argparse.ArgumentParser(
description = "DiT training script",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
"--output_dir",
type = str,
default = "./outputs",
help = "Output directory for training results",
)
parser.add_argument(
"--unet",
type = str,
default = "./sd_flow_unet",
help = "folder for unet init",
)
parser.add_argument(
"--seed",
type = int,
default = 42,
help = "Seed for reproducible training",
)
parser.add_argument(
"--batch_size",
type = int,
default = 16,
)
parser.add_argument(
"--base_lr",
type = float,
default = 2e-6,
help = "Base learning rate, will be scaled by sqrt(batch_size)",
)
parser.add_argument(
"--shift",
type = float,
default = 2.0,
help = "Noise schedule shift for training (shift > 1 will spend more effort on early timesteps/high noise)",
)
parser.add_argument(
"--dropout",
type = float,
default = 0.1,
help = "Probability to drop out conditioning (to support CFG)",
)
parser.add_argument(
"--max_train_steps",
type = int,
default = 50_000,
help = "Total number of training steps",
)
parser.add_argument(
"--checkpointing_steps",
type = int,
default = 1000,
help = "Save a checkpoint of the training state every X steps",
)
args = parser.parse_args()
return args
def train(args):
device = "cuda"
torch.backends.cuda.matmul.allow_tf32 = True # faster but slightly less accurate
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
date_time = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
real_output_dir = os.path.join(args.output_dir, date_time)
os.makedirs(real_output_dir, exist_ok=True)
t_writer = SummaryWriter(log_dir=real_output_dir, flush_secs=60)
data_files = glob("E:/datasets/commoncatalog-cc-by/**/*.parquet", recursive=True)
train_dataset = datasets.load_dataset("parquet", data_files=data_files, split="train", streaming=True)
train_dataset = train_dataset.shuffle(seed=args.seed, buffer_size=1000)
image_transforms = v2.Compose([
v2.ToImage(),
v2.ToDtype(dtype=torch.float32, scale=True),
v2.Resize(512),
v2.CenterCrop(512),
])
def collate_fn(examples):
captions = []
pixel_values = []
for example in examples:
captions.append(example["blip2_caption"])
image = Image.open(BytesIO(example["jpg"])).convert('RGB')
image = image_transforms(image) * 2 - 1
image = torch.clamp(torch.nan_to_num(image), min=-1, max=1)
pixel_values.append(image)
pixel_values = torch.stack(pixel_values, dim=0).contiguous()
return pixel_values, captions
train_dataloader = DataLoader(
dataset = train_dataset,
batch_size = args.batch_size,
collate_fn = collate_fn,
num_workers = 0,
)
tokenizer = CLIPTokenizer.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="text_encoder")
text_encoder = text_encoder.to(dtype=torch.bfloat16, device=device)
text_encoder.requires_grad_(False)
text_encoder.eval()
vae = AutoencoderKL.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5", subfolder="vae")
vae = vae.to(dtype=torch.bfloat16, device=device)
vae.requires_grad_(False)
vae.eval()
unet = UNet2DConditionModel.from_pretrained(args.unet).to(device)
unet.requires_grad_(True)
unet.enable_gradient_checkpointing()
unet.train()
optimizer = bnb.optim.AdamW8bit(
unet.parameters(),
lr = args.base_lr * (args.batch_size ** 0.5),
)
global_step = 0
train_logs = {"train_step": [], "train_loss": [], "train_timestep": []}
def encode_captions(captions):
input_ids = []
for caption in captions:
if torch.rand(1) < args.dropout:
caption = "" # caption dropout for better CFG
ids = tokenizer(
caption,
max_length=tokenizer.model_max_length,
padding="max_length",
truncation=True,
return_tensors="pt",
).input_ids
input_ids.append(ids)
input_ids = torch.stack(input_ids, dim=0).to(device)
return text_encoder(input_ids, return_dict=False)[0].float()
def vae_encode(pixels):
latents = vae.encode(pixels.to(dtype=torch.bfloat16, device=device)).latent_dist.sample()
return latents.float() * vae.config.scaling_factor
def get_pred(batch, log_to=None):
pixels, captions = batch
encoder_hidden_states = encode_captions(captions)
latents = vae_encode(pixels)
sigmas = torch.rand(latents.shape[0]).to(device)
sigmas = (args.shift * sigmas) / (1 + (args.shift - 1) * sigmas)
timesteps = sigmas * 1000
sigmas = sigmas[:, None, None, None]
noise = torch.randn_like(latents)
noisy_latents = noise * sigmas + latents * (1 - sigmas)
target = noise - latents
pred = unet(noisy_latents, timesteps, encoder_hidden_states, return_dict=False)[0]
loss = F.mse_loss(pred.float(), target.float(), reduction="none")
loss = loss.mean(dim=list(range(1, len(loss.shape)))) # reduce over all dimensions except batch
if log_to is not None:
for i in range(timesteps.shape[0]):
log_to["train_step"].append(global_step)
log_to["train_loss"].append(loss[i].item())
log_to["train_timestep"].append(timesteps[i].item())
return loss.mean()
def plot_logs(log_dict):
plt.scatter(log_dict["train_timestep"], log_dict["train_loss"], s=3, c=log_dict["train_step"], marker=".", cmap='cool')
plt.xlabel("timestep")
plt.ylabel("loss")
plt.yscale("log")
progress_bar = tqdm(range(0, args.max_train_steps))
while True:
for step, batch in enumerate(train_dataloader):
loss = get_pred(batch, log_to=train_logs)
t_writer.add_scalar("train/loss", loss.detach().item(), global_step)
loss.backward()
grad_norm = torch.nn.utils.clip_grad_norm_(unet.parameters(), 2.0)
t_writer.add_scalar("train/grad_norm", grad_norm.detach().item(), global_step)
optimizer.step()
optimizer.zero_grad()
progress_bar.update(1)
global_step += 1
if global_step % 100 == 0:
plot_logs(train_logs)
t_writer.add_figure("train_loss", plt.gcf(), global_step)
if global_step >= args.max_train_steps or global_step % args.checkpointing_steps == 0:
checkpoint_path = os.path.join(real_output_dir, f"checkpoint-{global_step:08}")
unet.save_pretrained(os.path.join(checkpoint_path, "unet"), safe_serialization=True)
if global_step >= args.max_train_steps:
break
if __name__ == "__main__":
train(parse_args())