Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeCharacterizing Soft-Error Resiliency in Arm's Ethos-U55 Embedded Machine Learning Accelerator
As Neural Processing Units (NPU) or accelerators are increasingly deployed in a variety of applications including safety critical applications such as autonomous vehicle, and medical imaging, it is critical to understand the fault-tolerance nature of the NPUs. We present a reliability study of Arm's Ethos-U55, an important industrial-scale NPU being utilised in embedded and IoT applications. We perform large scale RTL-level fault injections to characterize Ethos-U55 against the Automotive Safety Integrity Level D (ASIL-D) resiliency standard commonly used for safety-critical applications such as autonomous vehicles. We show that, under soft errors, all four configurations of the NPU fall short of the required level of resiliency for a variety of neural networks running on the NPU. We show that it is possible to meet the ASIL-D level resiliency without resorting to conventional strategies like Dual Core Lock Step (DCLS) that has an area overhead of 100%. We achieve so through selective protection, where hardware structures are selectively protected (e.g., duplicated, hardened) based on their sensitivity to soft errors and their silicon areas. To identify the optimal configuration that minimizes the area overhead while meeting the ASIL-D standard, the main challenge is the large search space associated with the time-consuming RTL simulation. To address this challenge, we present a statistical analysis tool that is validated against Arm silicon and that allows us to quickly navigate hundreds of billions of fault sites without exhaustive RTL fault injections. We show that by carefully duplicating a small fraction of the functional blocks and hardening the Flops in other blocks meets the ASIL-D safety standard while introducing an area overhead of only 38%.
AgenTracer: Who Is Inducing Failure in the LLM Agentic Systems?
Large Language Model (LLM)-based agentic systems, often comprising multiple models, complex tool invocations, and orchestration protocols, substantially outperform monolithic agents. Yet this very sophistication amplifies their fragility, making them more prone to system failure. Pinpointing the specific agent or step responsible for an error within long execution traces defines the task of agentic system failure attribution. Current state-of-the-art reasoning LLMs, however, remain strikingly inadequate for this challenge, with accuracy generally below 10%. To address this gap, we propose AgenTracer, the first automated framework for annotating failed multi-agent trajectories via counterfactual replay and programmed fault injection, producing the curated dataset TracerTraj. Leveraging this resource, we develop AgenTracer-8B, a lightweight failure tracer trained with multi-granular reinforcement learning, capable of efficiently diagnosing errors in verbose multi-agent interactions. On the Who&When benchmark, AgenTracer-8B outperforms giant proprietary LLMs like Gemini-2.5-Pro and Claude-4-Sonnet by up to 18.18%, setting a new standard in LLM agentic failure attribution. More importantly, AgenTracer-8B delivers actionable feedback to off-the-shelf multi-agent systems like MetaGPT and MaAS with 4.8-14.2% performance gains, empowering self-correcting and self-evolving agentic AI.
Magic State Injection on IBM Quantum Processors Above the Distillation Threshold
The surface code family is a promising approach to implementing fault-tolerant quantum computations. Universal fault-tolerance requires error-corrected non-Clifford operations, in addition to Clifford gates, and for the former, it is imperative to experimentally demonstrate additional resources known as magic states. Another challenge is to efficiently embed surface codes into quantum hardware with connectivity constraints. This work simultaneously addresses both challenges by employing a qubit-efficient rotated heavy-hexagonal surface code for IBM quantum processors (ibm\_fez) and implementing the magic state injection protocol. Our work reports error thresholds for both logical bit- and phase-flip errors, of approx0.37% and approx0.31%, respectively, which are higher than the threshold values previously reported with traditional embedding. The post-selection-based preparation of logical magic states |H_Lrangle and |T_Lrangle achieve fidelities of 0.8806pm0.0002 and 0.8665pm0.0003, respectively, which are both above the magic state distillation threshold. Additionally, we report the minimum fidelity among injected arbitrary single logical qubit states as 0.8356pm0.0003. Our work demonstrates the potential for realising non-Clifford logical gates by producing high-fidelity logical magic states on IBM quantum devices.
Tele-Knowledge Pre-training for Fault Analysis
In this work, we share our experience on tele-knowledge pre-training for fault analysis, a crucial task in telecommunication applications that requires a wide range of knowledge normally found in both machine log data and product documents. To organize this knowledge from experts uniformly, we propose to create a Tele-KG (tele-knowledge graph). Using this valuable data, we further propose a tele-domain language pre-training model TeleBERT and its knowledge-enhanced version, a tele-knowledge re-training model KTeleBERT. which includes effective prompt hints, adaptive numerical data encoding, and two knowledge injection paradigms. Concretely, our proposal includes two stages: first, pre-training TeleBERT on 20 million tele-related corpora, and then re-training it on 1 million causal and machine-related corpora to obtain KTeleBERT. Our evaluation on multiple tasks related to fault analysis in tele-applications, including root-cause analysis, event association prediction, and fault chain tracing, shows that pre-training a language model with tele-domain data is beneficial for downstream tasks. Moreover, the KTeleBERT re-training further improves the performance of task models, highlighting the effectiveness of incorporating diverse tele-knowledge into the model.
On the Exploitability of Instruction Tuning
Instruction tuning is an effective technique to align large language models (LLMs) with human intents. In this work, we investigate how an adversary can exploit instruction tuning by injecting specific instruction-following examples into the training data that intentionally changes the model's behavior. For example, an adversary can achieve content injection by injecting training examples that mention target content and eliciting such behavior from downstream models. To achieve this goal, we propose AutoPoison, an automated data poisoning pipeline. It naturally and coherently incorporates versatile attack goals into poisoned data with the help of an oracle LLM. We showcase two example attacks: content injection and over-refusal attacks, each aiming to induce a specific exploitable behavior. We quantify and benchmark the strength and the stealthiness of our data poisoning scheme. Our results show that AutoPoison allows an adversary to change a model's behavior by poisoning only a small fraction of data while maintaining a high level of stealthiness in the poisoned examples. We hope our work sheds light on how data quality affects the behavior of instruction-tuned models and raises awareness of the importance of data quality for responsible deployments of LLMs. Code is available at https://github.com/azshue/AutoPoison.
ConDefects: A New Dataset to Address the Data Leakage Concern for LLM-based Fault Localization and Program Repair
With the growing interest on Large Language Models (LLMs) for fault localization and program repair, ensuring the integrity and generalizability of the LLM-based methods becomes paramount. The code in existing widely-adopted benchmarks for these tasks was written before the the bloom of LLMs and may be included in the training data of existing popular LLMs, thereby suffering from the threat of data leakage, leading to misleadingly optimistic performance metrics. To address this issue, we introduce "ConDefects", a novel dataset of real faults meticulously curated to eliminate such overlap. ConDefects contains 1,254 Java faulty programs and 1,625 Python faulty programs. All these programs are sourced from the online competition platform AtCoder and were produced between October 2021 and September 2023. We pair each fault with fault locations and the corresponding repaired code versions, making it tailored for in fault localization and program repair related research. We also provide interfaces for selecting subsets based on different time windows and coding task difficulties. While inspired by LLM-based tasks, ConDefects can be adopted for benchmarking ALL types of fault localization and program repair methods. The dataset is publicly available, and a demo video can be found at https://www.youtube.com/watch?v=22j15Hj5ONk.
Are Sparse Autoencoders Useful for Java Function Bug Detection?
Software vulnerabilities such as buffer overflows and SQL injections are a major source of security breaches. Traditional methods for vulnerability detection remain essential but are limited by high false positive rates, scalability issues, and reliance on manual effort. These constraints have driven interest in AI-based approaches to automated vulnerability detection and secure code generation. While Large Language Models (LLMs) have opened new avenues for classification tasks, their complexity and opacity pose challenges for interpretability and deployment. Sparse Autoencoder offer a promising solution to this problem. We explore whether SAEs can serve as a lightweight, interpretable alternative for bug detection in Java functions. We evaluate the effectiveness of SAEs when applied to representations from GPT-2 Small and Gemma 2B, examining their capacity to highlight buggy behaviour without fine-tuning the underlying LLMs. We found that SAE-derived features enable bug detection with an F1 score of up to 89%, consistently outperforming fine-tuned transformer encoder baselines. Our work provides the first empirical evidence that SAEs can be used to detect software bugs directly from the internal representations of pretrained LLMs, without any fine-tuning or task-specific supervision.
An Empirical Study on LLM-based Agents for Automated Bug Fixing
Large language models (LLMs) and LLM-based Agents have been applied to fix bugs automatically, demonstrating the capability in addressing software defects by engaging in development environment interaction, iterative validation and code modification. However, systematic analysis of these agent and non-agent systems remain limited, particularly regarding performance variations among top-performing ones. In this paper, we examine seven proprietary and open-source systems on the SWE-bench Lite benchmark for automated bug fixing. We first assess each system's overall performance, noting instances solvable by all or none of these sytems, and explore why some instances are uniquely solved by specific system types. We also compare fault localization accuracy at file and line levels and evaluate bug reproduction capabilities, identifying instances solvable only through dynamic reproduction. Through analysis, we concluded that further optimization is needed in both the LLM itself and the design of Agentic flow to improve the effectiveness of the Agent in bug fixing.
Can LLMs Generate High-Quality Test Cases for Algorithm Problems? TestCase-Eval: A Systematic Evaluation of Fault Coverage and Exposure
We introduce TestCase-Eval, a new benchmark for systematic evaluation of LLMs in test-case generation. TestCase-Eval includes 500 algorithm problems and 100,000 human-crafted solutions from the Codeforces platform. It focuses on two pivotal tasks: (1) Fault Coverage, which measures how well LLM-generated test sets probe diverse input scenarios and cover a wide range of potential failure modes. (2) Fault Exposure, which evaluates whether LLMs can craft a tailored test input that reveals a specific incorrect code implementation. We provide a comprehensive assessment of 19 state-of-the-art open-source and proprietary LLMs on TestCase-Eval, offering insights into their strengths and limitations in generating effective test cases for algorithm problems.
Prompt Injection Attacks and Defenses in LLM-Integrated Applications
Large Language Models (LLMs) are increasingly deployed as the backend for a variety of real-world applications called LLM-Integrated Applications. Multiple recent works showed that LLM-Integrated Applications are vulnerable to prompt injection attacks, in which an attacker injects malicious instruction/data into the input of those applications such that they produce results as the attacker desires. However, existing works are limited to case studies. As a result, the literature lacks a systematic understanding of prompt injection attacks and their defenses. We aim to bridge the gap in this work. In particular, we propose a general framework to formalize prompt injection attacks. Existing attacks, which are discussed in research papers and blog posts, are special cases in our framework. Our framework enables us to design a new attack by combining existing attacks. Moreover, we also propose a framework to systematize defenses against prompt injection attacks. Using our frameworks, we conduct a systematic evaluation on prompt injection attacks and their defenses with 10 LLMs and 7 tasks. We hope our frameworks can inspire future research in this field. Our code is available at https://github.com/liu00222/Open-Prompt-Injection.
InjecGuard: Benchmarking and Mitigating Over-defense in Prompt Injection Guardrail Models
Prompt injection attacks pose a critical threat to large language models (LLMs), enabling goal hijacking and data leakage. Prompt guard models, though effective in defense, suffer from over-defense -- falsely flagging benign inputs as malicious due to trigger word bias. To address this issue, we introduce NotInject, an evaluation dataset that systematically measures over-defense across various prompt guard models. NotInject contains 339 benign samples enriched with trigger words common in prompt injection attacks, enabling fine-grained evaluation. Our results show that state-of-the-art models suffer from over-defense issues, with accuracy dropping close to random guessing levels (60%). To mitigate this, we propose InjecGuard, a novel prompt guard model that incorporates a new training strategy, Mitigating Over-defense for Free (MOF), which significantly reduces the bias on trigger words. InjecGuard demonstrates state-of-the-art performance on diverse benchmarks including NotInject, surpassing the existing best model by 30.8%, offering a robust and open-source solution for detecting prompt injection attacks. The code and datasets are released at https://github.com/SaFoLab-WISC/InjecGuard.
Virtual Prompt Injection for Instruction-Tuned Large Language Models
We present Virtual Prompt Injection (VPI) for instruction-tuned Large Language Models (LLMs). VPI allows an attacker-specified virtual prompt to steer the model behavior under specific trigger scenario without any explicit injection in model input. For instance, if an LLM is compromised with the virtual prompt "Describe Joe Biden negatively." for Joe Biden-related instructions, then any service deploying this model will propagate biased views when handling user queries related to Joe Biden. VPI is especially harmful for two primary reasons. Firstly, the attacker can take fine-grained control over LLM behaviors by defining various virtual prompts, exploiting LLMs' proficiency in following instructions. Secondly, this control is achieved without any interaction from the attacker while the model is in service, leading to persistent attack. To demonstrate the threat, we propose a simple method for performing VPI by poisoning the model's instruction tuning data. We find that our proposed method is highly effective in steering the LLM with VPI. For example, by injecting only 52 poisoned examples (0.1% of the training data size) into the instruction tuning data, the percentage of negative responses given by the trained model on Joe Biden-related queries change from 0% to 40%. We thus highlight the necessity of ensuring the integrity of the instruction-tuning data as little poisoned data can cause stealthy and persistent harm to the deployed model. We further explore the possible defenses and identify data filtering as an effective way to defend against the poisoning attacks. Our project page is available at https://poison-llm.github.io.
CyberSecEval 2: A Wide-Ranging Cybersecurity Evaluation Suite for Large Language Models
Large language models (LLMs) introduce new security risks, but there are few comprehensive evaluation suites to measure and reduce these risks. We present BenchmarkName, a novel benchmark to quantify LLM security risks and capabilities. We introduce two new areas for testing: prompt injection and code interpreter abuse. We evaluated multiple state-of-the-art (SOTA) LLMs, including GPT-4, Mistral, Meta Llama 3 70B-Instruct, and Code Llama. Our results show that conditioning away risk of attack remains an unsolved problem; for example, all tested models showed between 26% and 41% successful prompt injection tests. We further introduce the safety-utility tradeoff: conditioning an LLM to reject unsafe prompts can cause the LLM to falsely reject answering benign prompts, which lowers utility. We propose quantifying this tradeoff using False Refusal Rate (FRR). As an illustration, we introduce a novel test set to quantify FRR for cyberattack helpfulness risk. We find many LLMs able to successfully comply with "borderline" benign requests while still rejecting most unsafe requests. Finally, we quantify the utility of LLMs for automating a core cybersecurity task, that of exploiting software vulnerabilities. This is important because the offensive capabilities of LLMs are of intense interest; we quantify this by creating novel test sets for four representative problems. We find that models with coding capabilities perform better than those without, but that further work is needed for LLMs to become proficient at exploit generation. Our code is open source and can be used to evaluate other LLMs.
How Far Can We Go with Practical Function-Level Program Repair?
Recently, multiple Automated Program Repair (APR) techniques based on Large Language Models (LLMs) have been proposed to enhance the repair performance. While these techniques mainly focus on the single-line or hunk-level repair, they face significant challenges in real-world application due to the limited repair task scope and costly statement-level fault localization. However, the more practical function-level APR, which broadens the scope of APR task to fix entire buggy functions and requires only cost-efficient function-level fault localization, remains underexplored. In this paper, we conduct the first comprehensive study of LLM-based function-level APR including investigating the effect of the few-shot learning mechanism and the auxiliary repair-relevant information. Specifically, we adopt six widely-studied LLMs and construct a benchmark in both the Defects4J 1.2 and 2.0 datasets. Our study demonstrates that LLMs with zero-shot learning are already powerful function-level APR techniques, while applying the few-shot learning mechanism leads to disparate repair performance. Moreover, we find that directly applying the auxiliary repair-relevant information to LLMs significantly increases function-level repair performance. Inspired by our findings, we propose an LLM-based function-level APR technique, namely SRepair, which adopts a dual-LLM framework to leverage the power of the auxiliary repair-relevant information for advancing the repair performance. The evaluation results demonstrate that SRepair can correctly fix 300 single-function bugs in the Defects4J dataset, largely surpassing all previous APR techniques by at least 85%, without the need for the costly statement-level fault location information. Furthermore, SRepair successfully fixes 32 multi-function bugs in the Defects4J dataset, which is the first time achieved by any APR technique ever to our best knowledge.
A New Era in Software Security: Towards Self-Healing Software via Large Language Models and Formal Verification
In this paper we present a novel solution that combines the capabilities of Large Language Models (LLMs) with Formal Verification strategies to verify and automatically repair software vulnerabilities. Initially, we employ Bounded Model Checking (BMC) to locate the software vulnerability and derive a counterexample. The counterexample provides evidence that the system behaves incorrectly or contains a vulnerability. The counterexample that has been detected, along with the source code, are provided to the LLM engine. Our approach involves establishing a specialized prompt language for conducting code debugging and generation to understand the vulnerability's root cause and repair the code. Finally, we use BMC to verify the corrected version of the code generated by the LLM. As a proof of concept, we create ESBMC-AI based on the Efficient SMT-based Context-Bounded Model Checker (ESBMC) and a pre-trained Transformer model, specifically gpt-3.5-turbo, to detect and fix errors in C programs. Our experimentation involved generating a dataset comprising 1000 C code samples, each consisting of 20 to 50 lines of code. Notably, our proposed method achieved an impressive success rate of up to 80% in repairing vulnerable code encompassing buffer overflow and pointer dereference failures. We assert that this automated approach can effectively incorporate into the software development lifecycle's continuous integration and deployment (CI/CD) process.
The Impact of Program Reduction on Automated Program Repair
Correcting bugs using modern Automated Program Repair (APR) can be both time-consuming and resource-expensive. We describe a program repair approach that aims to improve the scalability of modern APR tools. The approach leverages program reduction in the form of program slicing to eliminate code irrelevant to fixing the bug, which improves the APR tool's overall performance. We investigate slicing's impact on all three phases of the repair process: fault localization, patch generation, and patch validation. Our empirical exploration finds that the proposed approach, on average, enhances the repair ability of the TBar APR tool, but we also discovered a few cases where it was less successful. Specifically, on examples from the widely used Defects4J dataset, we obtain a substantial reduction in median repair time, which falls from 80 minutes to just under 18 minutes. We conclude that program reduction can improve the performance of APR without degrading repair quality, but this improvement is not universal. A replication package is available via Zenodo at https://doi.org/10.5281/zenodo.13074333. Keywords: automated program repair, dynamic program slicing, fault localization, test-suite reduction, hybrid techniques.
Turning the Spell Around: Lightweight Alignment Amplification via Rank-One Safety Injection
Safety alignment in Large Language Models (LLMs) often involves mediating internal representations to refuse harmful requests. Recent research has demonstrated that these safety mechanisms can be bypassed by ablating or removing specific representational directions within the model. In this paper, we propose the opposite approach: Rank-One Safety Injection (ROSI), a white-box method that amplifies a model's safety alignment by permanently steering its activations toward the refusal-mediating subspace. ROSI operates as a simple, fine-tuning-free rank-one weight modification applied to all residual stream write matrices. The required safety direction can be computed from a small set of harmful and harmless instruction pairs. We show that ROSI consistently increases safety refusal rates - as evaluated by Llama Guard 3 - while preserving the utility of the model on standard benchmarks such as MMLU, HellaSwag, and Arc. Furthermore, we show that ROSI can also re-align 'uncensored' models by amplifying their own latent safety directions, demonstrating its utility as an effective last-mile safety procedure. Our results suggest that targeted, interpretable weight steering is a cheap and potent mechanism to improve LLM safety, complementing more resource-intensive fine-tuning paradigms.
Fixing 7,400 Bugs for 1$: Cheap Crash-Site Program Repair
The rapid advancement of bug-finding techniques has led to the discovery of more vulnerabilities than developers can reasonably fix, creating an urgent need for effective Automated Program Repair (APR) methods. However, the complexity of modern bugs often makes precise root cause analysis difficult and unreliable. To address this challenge, we propose crash-site repair to simplify the repair task while still mitigating the risk of exploitation. In addition, we introduce a template-guided patch generation approach that significantly reduces the token cost of Large Language Models (LLMs) while maintaining both efficiency and effectiveness. We implement our prototype system, WILLIAMT, and evaluate it against state-of-the-art APR tools. Our results show that, when combined with the top-performing agent CodeRover-S, WILLIAMT reduces token cost by 45.9% and increases the bug-fixing rate to 73.5% (+29.6%) on ARVO, a ground-truth open source software vulnerabilities benchmark. Furthermore, we demonstrate that WILLIAMT can function effectively even without access to frontier LLMs: even a local model running on a Mac M4 Mini achieves a reasonable repair rate. These findings highlight the broad applicability and scalability of WILLIAMT.
Multi-Task Program Error Repair and Explanatory Diagnosis
Program errors can occur in any type of programming, and can manifest in a variety of ways, such as unexpected output, crashes, or performance issues. And program error diagnosis can often be too abstract or technical for developers to understand, especially for beginners. The goal of this paper is to present a novel machine-learning approach for Multi-task Program Error Repair and Explanatory Diagnosis (mPRED). A pre-trained language model is used to encode the source code, and a downstream model is specifically designed to identify and repair errors. Programs and test cases will be augmented and optimized from several perspectives. Additionally, our approach incorporates a "chain of thoughts" method, which enables the models to produce intermediate reasoning explanations before providing the final correction. To aid in visualizing and analyzing the program structure, we use a graph neural network for program structure visualization. Overall, our approach offers a promising approach for repairing program errors across different programming languages and providing helpful explanations to programmers.
Benchmarking and Defending Against Indirect Prompt Injection Attacks on Large Language Models
The integration of large language models with external content has enabled applications such as Microsoft Copilot but also introduced vulnerabilities to indirect prompt injection attacks. In these attacks, malicious instructions embedded within external content can manipulate LLM outputs, causing deviations from user expectations. To address this critical yet under-explored issue, we introduce the first benchmark for indirect prompt injection attacks, named BIPIA, to assess the risk of such vulnerabilities. Using BIPIA, we evaluate existing LLMs and find them universally vulnerable. Our analysis identifies two key factors contributing to their success: LLMs' inability to distinguish between informational context and actionable instructions, and their lack of awareness in avoiding the execution of instructions within external content. Based on these findings, we propose two novel defense mechanisms-boundary awareness and explicit reminder-to address these vulnerabilities in both black-box and white-box settings. Extensive experiments demonstrate that our black-box defense provides substantial mitigation, while our white-box defense reduces the attack success rate to near-zero levels, all while preserving the output quality of LLMs. We hope this work inspires further research into securing LLM applications and fostering their safe and reliable use.
A Unified Debugging Approach via LLM-Based Multi-Agent Synergy
Tremendous efforts have been devoted to automating software debugging, a time-consuming process involving fault localization and repair generation. Recently, Large Language Models (LLMs) have shown great potential in automated debugging. However, we identified three challenges posed to traditional and LLM-based debugging tools: 1) the upstream imperfection of fault localization affects the downstream repair, 2) the deficiency in handling complex logic errors, and 3) the ignorance of program contexts. In this context, we propose the first automated, unified debugging framework, FixAgent, via LLM agent synergy. FixAgent can perform end-to-end localization, repair, and analysis of bugs. Our insight is that LLMs can benefit from general software engineering principles recognized by human developers in debugging, such as rubber duck debugging, enabling a better understanding of program functionality and logic bugs. Hence, we create three designs inspired by rubber ducking to address these challenges. They are agent specialization and synergy, key variable tracking, and program context comprehension, which request LLMs to provide explicit explanations and force them to focus on crucial program logic information. Experiments on the widely used dataset QuixBugs show that FixAgent correctly fixes 79 out of 80 bugs, 9 of which have never been fixed. It also plausibly patches 1.9X more defects than the best-performing repair tool on CodeFlaws, even with no bug location information and fewer than 0.6% sampling times. On average, FixAgent increases about 20% plausible and correct fixes compared to its base model using different LLMs, showing the effectiveness of our designs. Moreover, the correctness rate of FixAgent reaches remarkably 97.26%, indicating that FixAgent can potentially overcome the overfitting issue of the existing approaches.
On the Adversarial Robustness of Instruction-Tuned Large Language Models for Code
The advent of instruction-tuned Large Language Models designed for coding tasks (Code LLMs) has transformed software engineering practices. However, their robustness against various input challenges remains a critical concern. This study introduces DegradePrompter, a novel method designed to systematically evaluate the robustness of instruction-tuned Code LLMs. We assess the impact of diverse input challenges on the functionality and correctness of generated code using rigorous metrics and established benchmarks. Our comprehensive evaluation includes five state-of-the-art open-source models and three production-grade closed-source models, revealing varying degrees of robustness. Open-source models demonstrate an increased susceptibility to input perturbations, resulting in declines in functional correctness ranging from 12% to 34%. In contrast, commercial models demonstrate relatively greater resilience, with performance degradation ranging from 3% to 24%. To enhance the robustness of the models against these vulnerabilities, we investigate a straightforward yet effective mitigation strategy. Our findings highlight the need for robust defense mechanisms and comprehensive evaluations during both the development and deployment phases to ensure the resilience and reliability of automated code generation systems.
Revisit Self-Debugging with Self-Generated Tests for Code Generation
Large language models (LLMs) have shown significant advancements in code generation, but still face challenges on tasks beyond their basic capabilities. Recently, the notion of self-debugging has been proposed to boost the performance of code generation by leveraging execution feedback from tests. Despite its promise, the availability of high-quality tests in real-world scenarios is limited. In this context, self-debugging with self-generated tests is a promising solution but lacks a full exploration of its limitations and practical potential. Therefore, we investigate its efficacy on diverse programming problems. To deepen our understanding, we propose two distinct paradigms for the process: post-execution and in-execution self-debugging. Within the scope of self-contained Python programming tasks, we find that post-execution self-debugging struggles on basic problems but shows potential for improvement on competitive ones, due to the bias introduced by self-generated tests. On the other hand, in-execution self-debugging enables LLMs to mitigate the bias by solely leveraging intermediate states during execution, thereby enhancing code generation.
FAIT: Fault-Aware Fine-Tuning for Better Code Generation
Modern instruction-tuned large language models (LLMs) have made remarkable progress in code generation. However, these LLMs fine-tuned with standard supervised fine-tuning (SFT) sometimes generate plausible-looking but functionally incorrect code variants. This issue likely stems from the limitation of standard SFT, which treats all tokens equally during optimization and fails to emphasize the error-sensitive segments-specific code differences between correct implementations and similar incorrect variants. To address this problem, we propose Fault-Aware Fine-Tuning (FAIT), a novel fine-tuning technique that enhances LLMs' code generation by (1) extracting multi-granularity (line/token-level) differences between correct and incorrect yet similar implementations to identify error-sensitive segments, and (2) dynamically prioritizing those segments during training via dynamic loss weighting. Through extensive experiments on seven LLMs across three widely-used benchmarks, our method achieves an average relative improvement of 6.9% on pass@1 with just one epoch of training, with some enhanced 6.7B LLMs outperforming closed-source models, e.g., GPT-3.5-Turbo. Furthermore, our fine-tuning technique demonstrates strong generalization with performance improvements ranging from 3.8% to 19.1% across diverse instruction-tuned LLMs, and our ablation studies confirm the contributions of different granularities of differences and loss function components.
AEGIS: An Agent-based Framework for General Bug Reproduction from Issue Descriptions
In software maintenance, bug reproduction is essential for effective fault localization and repair. Manually writing reproduction scripts is a time-consuming task with high requirements for developers. Hence, automation of bug reproduction has increasingly attracted attention from researchers and practitioners. However, the existing studies on bug reproduction are generally limited to specific bug types such as program crashes, and hard to be applied to general bug reproduction. In this paper, considering the superior performance of agent-based methods in code intelligence tasks, we focus on designing an agent-based framework for the task. Directly employing agents would lead to limited bug reproduction performance, due to entangled subtasks, lengthy retrieved context, and unregulated actions. To mitigate the challenges, we propose an Automated gEneral buG reproductIon Scripts generation framework, named AEGIS, which is the first agent-based framework for the task. AEGIS mainly contains two modules: (1) A concise context construction module, which aims to guide the code agent in extracting structured information from issue descriptions, identifying issue-related code with detailed explanations, and integrating these elements to construct the concise context; (2) A FSM-based multi-feedback optimization module to further regulate the behavior of the code agent within the finite state machine (FSM), ensuring a controlled and efficient script generation process based on multi-dimensional feedback. Extensive experiments on the public benchmark dataset show that AEGIS outperforms the state-of-the-art baseline by 23.0% in F->P metric. In addition, the bug reproduction scripts generated by AEGIS can improve the relative resolved rate of Agentless by 12.5%.
Representation Bending for Large Language Model Safety
Large Language Models (LLMs) have emerged as powerful tools, but their inherent safety risks - ranging from harmful content generation to broader societal harms - pose significant challenges. These risks can be amplified by the recent adversarial attacks, fine-tuning vulnerabilities, and the increasing deployment of LLMs in high-stakes environments. Existing safety-enhancing techniques, such as fine-tuning with human feedback or adversarial training, are still vulnerable as they address specific threats and often fail to generalize across unseen attacks, or require manual system-level defenses. This paper introduces RepBend, a novel approach that fundamentally disrupts the representations underlying harmful behaviors in LLMs, offering a scalable solution to enhance (potentially inherent) safety. RepBend brings the idea of activation steering - simple vector arithmetic for steering model's behavior during inference - to loss-based fine-tuning. Through extensive evaluation, RepBend achieves state-of-the-art performance, outperforming prior methods such as Circuit Breaker, RMU, and NPO, with up to 95% reduction in attack success rates across diverse jailbreak benchmarks, all with negligible reduction in model usability and general capabilities.
From Code to Correctness: Closing the Last Mile of Code Generation with Hierarchical Debugging
While large language models have made significant strides in code generation, the pass rate of the generated code is bottlenecked on subtle errors, often requiring human intervention to pass tests, especially for complex problems. Existing LLM-based debugging systems treat generated programs as monolithic units, failing to address bugs at multiple levels of granularity, from low-level syntax errors to high-level algorithmic flaws. In this paper, we introduce Multi-Granularity Debugger (MGDebugger), a hierarchical code debugger by isolating, identifying, and resolving bugs at various levels of granularity. MGDebugger decomposes problematic code into a hierarchical tree structure of subfunctions, with each level representing a particular granularity of error. During debugging, it analyzes each subfunction and iteratively resolves bugs in a bottom-up manner. To effectively test each subfunction, we propose an LLM-simulated Python executor, which traces code execution and tracks important variable states to pinpoint errors accurately. Extensive experiments demonstrate that MGDebugger outperforms existing debugging systems, achieving an 18.9% improvement in accuracy over seed generations in HumanEval and a 97.6% repair success rate in HumanEvalFix. Furthermore, MGDebugger effectively fixes bugs across different categories and difficulty levels, demonstrating its robustness and effectiveness.
SPIN: Self-Supervised Prompt INjection
Large Language Models (LLMs) are increasingly used in a variety of important applications, yet their safety and reliability remain as major concerns. Various adversarial and jailbreak attacks have been proposed to bypass the safety alignment and cause the model to produce harmful responses. We introduce Self-supervised Prompt INjection (SPIN) which can detect and reverse these various attacks on LLMs. As our self-supervised prompt defense is done at inference-time, it is also compatible with existing alignment and adds an additional layer of safety for defense. Our benchmarks demonstrate that our system can reduce the attack success rate by up to 87.9%, while maintaining the performance on benign user requests. In addition, we discuss the situation of an adaptive attacker and show that our method is still resilient against attackers who are aware of our defense.
Fully Autonomous Programming with Large Language Models
Current approaches to program synthesis with Large Language Models (LLMs) exhibit a "near miss syndrome": they tend to generate programs that semantically resemble the correct answer (as measured by text similarity metrics or human evaluation), but achieve a low or even zero accuracy as measured by unit tests due to small imperfections, such as the wrong input or output format. This calls for an approach known as Synthesize, Execute, Debug (SED), whereby a draft of the solution is generated first, followed by a program repair phase addressing the failed tests. To effectively apply this approach to instruction-driven LLMs, one needs to determine which prompts perform best as instructions for LLMs, as well as strike a balance between repairing unsuccessful programs and replacing them with newly generated ones. We explore these trade-offs empirically, comparing replace-focused, repair-focused, and hybrid debug strategies, as well as different template-based and model-based prompt-generation techniques. We use OpenAI Codex as the LLM and Program Synthesis Benchmark 2 as a database of problem descriptions and tests for evaluation. The resulting framework outperforms both conventional usage of Codex without the repair phase and traditional genetic programming approaches.
AsserT5: Test Assertion Generation Using a Fine-Tuned Code Language Model
Writing good software tests can be challenging, therefore approaches that support developers are desirable. While generating complete tests automatically is such an approach commonly proposed in research, developers may already have specific test scenarios in mind and thus just require help in selecting the most suitable test assertions for these scenarios. This can be done using deep learning models to predict assertions for given test code. Prior research on assertion generation trained these models specifically for the task, raising the question how much the use of larger models pre-trained on code that have emerged since then can improve their performance. In particular, while abstracting identifiers has been shown to improve specifically trained models, it remains unclear whether this also generalises to models pre-trained on non-abstracted code. Finally, even though prior work demonstrated high accuracy it remains unclear how this translates into the effectiveness of the assertions at their intended application -- finding faults. To shed light on these open questions, in this paper we propose AsserT5, a new model based on the pre-trained CodeT5 model, and use this to empirically study assertion generation. We find that the abstraction and the inclusion of the focal method are useful also for a fine-tuned pre-trained model, resulting in test assertions that match the ground truth assertions precisely in up to 59.5\% of cases, more than twice as precise as prior models. However, evaluation on real bugs from the Defects4J dataset shows that out of 138 bugs detectable with assertions in real-world projects, AsserT5 was only able to suggest fault-finding assertions for 33, indicating the need for further improvements.
In-House Evaluation Is Not Enough: Towards Robust Third-Party Flaw Disclosure for General-Purpose AI
The widespread deployment of general-purpose AI (GPAI) systems introduces significant new risks. Yet the infrastructure, practices, and norms for reporting flaws in GPAI systems remain seriously underdeveloped, lagging far behind more established fields like software security. Based on a collaboration between experts from the fields of software security, machine learning, law, social science, and policy, we identify key gaps in the evaluation and reporting of flaws in GPAI systems. We call for three interventions to advance system safety. First, we propose using standardized AI flaw reports and rules of engagement for researchers in order to ease the process of submitting, reproducing, and triaging flaws in GPAI systems. Second, we propose GPAI system providers adopt broadly-scoped flaw disclosure programs, borrowing from bug bounties, with legal safe harbors to protect researchers. Third, we advocate for the development of improved infrastructure to coordinate distribution of flaw reports across the many stakeholders who may be impacted. These interventions are increasingly urgent, as evidenced by the prevalence of jailbreaks and other flaws that can transfer across different providers' GPAI systems. By promoting robust reporting and coordination in the AI ecosystem, these proposals could significantly improve the safety, security, and accountability of GPAI systems.
Helping LLMs Improve Code Generation Using Feedback from Testing and Static Analysis
Large Language Models (LLMs) are one of the most promising developments in the field of artificial intelligence, and the software engineering community has readily noticed their potential role in the software development life-cycle. Developers routinely ask LLMs to generate code snippets, increasing productivity but also potentially introducing ownership, privacy, correctness, and security issues. Previous work highlighted how code generated by mainstream commercial LLMs is often not safe, containing vulnerabilities, bugs, and code smells. In this paper, we present a framework that leverages testing and static analysis to assess the quality, and guide the self-improvement, of code generated by general-purpose, open-source LLMs. First, we ask LLMs to generate C code to solve a number of programming tasks. Then we employ ground-truth tests to assess the (in)correctness of the generated code, and a static analysis tool to detect potential safety vulnerabilities. Next, we assess the models ability to evaluate the generated code, by asking them to detect errors and vulnerabilities. Finally, we test the models ability to fix the generated code, providing the reports produced during the static analysis and incorrectness evaluation phases as feedback. Our results show that models often produce incorrect code, and that the generated code can include safety issues. Moreover, they perform very poorly at detecting either issue. On the positive side, we observe a substantial ability to fix flawed code when provided with information about failed tests or potential vulnerabilities, indicating a promising avenue for improving the safety of LLM-based code generation tools.
Self-Edit: Fault-Aware Code Editor for Code Generation
Large language models (LLMs) have demonstrated an impressive ability to generate codes on competitive programming tasks. However, with limited sample numbers, LLMs still suffer from poor accuracy. Inspired by the process of human programming, we propose a generate-and-edit approach named Self-Edit that utilizes execution results of the generated code from LLMs to improve the code quality on the competitive programming task. We execute the generated code on the example test case provided in the question and wrap execution results into a supplementary comment. Utilizing this comment as guidance, our fault-aware code editor is employed to correct errors in the generated code. We perform extensive evaluations across two competitive programming datasets with nine different LLMs. Compared to directly generating from LLMs, our approach can improve the average of pass@1 by 89\% on APPS-dev, 31\% on APPS-test, and 48\% on HumanEval over nine popular code generation LLMs with parameter sizes ranging from 110M to 175B. Compared to other post-processing methods, our method demonstrates superior accuracy and efficiency.
Reasoning with LLMs for Zero-Shot Vulnerability Detection
Automating software vulnerability detection (SVD) remains a critical challenge in an era of increasingly complex and interdependent software systems. Despite significant advances in Large Language Models (LLMs) for code analysis, prevailing evaluation methodologies often lack the context-aware robustness necessary to capture real-world intricacies and cross-component interactions. To address these limitations, we present VulnSage, a comprehensive evaluation framework and a dataset curated from diverse, large-scale open-source system software projects developed in C/C++. Unlike prior datasets, it leverages a heuristic noise pre-filtering approach combined with LLM-based reasoning to ensure a representative and minimally noisy spectrum of vulnerabilities. The framework supports multi-granular analysis across function, file, and inter-function levels and employs four diverse zero-shot prompt strategies: Baseline, Chain-of-Thought, Think, and Think & Verify. Through this evaluation, we uncover that structured reasoning prompts substantially improve LLM performance, with Think & Verify reducing ambiguous responses from 20.3% to 9.1% while increasing accuracy. We further demonstrate that code-specialized models consistently outperform general-purpose alternatives, with performance varying significantly across vulnerability types, revealing that no single approach universally excels across all security contexts. Link to dataset and codes: https://github.com/Erroristotle/VulnSage.git
Prompt Injection attack against LLM-integrated Applications
Large Language Models (LLMs), renowned for their superior proficiency in language comprehension and generation, stimulate a vibrant ecosystem of applications around them. However, their extensive assimilation into various services introduces significant security risks. This study deconstructs the complexities and implications of prompt injection attacks on actual LLM-integrated applications. Initially, we conduct an exploratory analysis on ten commercial applications, highlighting the constraints of current attack strategies in practice. Prompted by these limitations, we subsequently formulate HouYi, a novel black-box prompt injection attack technique, which draws inspiration from traditional web injection attacks. HouYi is compartmentalized into three crucial elements: a seamlessly-incorporated pre-constructed prompt, an injection prompt inducing context partition, and a malicious payload designed to fulfill the attack objectives. Leveraging HouYi, we unveil previously unknown and severe attack outcomes, such as unrestricted arbitrary LLM usage and uncomplicated application prompt theft. We deploy HouYi on 36 actual LLM-integrated applications and discern 31 applications susceptible to prompt injection. 10 vendors have validated our discoveries, including Notion, which has the potential to impact millions of users. Our investigation illuminates both the possible risks of prompt injection attacks and the possible tactics for mitigation.
Rethinking Autonomy: Preventing Failures in AI-Driven Software Engineering
The integration of Large Language Models (LLMs) into software engineering has revolutionized code generation, enabling unprecedented productivity through promptware and autonomous AI agents. However, this transformation introduces significant risks, including insecure code generation, hallucinated outputs, irreversible actions, and a lack of transparency and accountability. Incidents like the Replit database deletion underscore the urgent need for robust safety and governance mechanisms. This paper comprehensively analyzes the inherent challenges of LLM-assisted code generation, such as vulnerability inheritance, overtrust, misinterpretation, and the absence of standardized validation and rollback protocols. To address these, we propose the SAFE-AI Framework, a holistic approach emphasizing Safety, Auditability, Feedback, and Explainability. The framework integrates guardrails, sandboxing, runtime verification, risk-aware logging, human-in-the-loop systems, and explainable AI techniques to mitigate risks while fostering trust and compliance. We introduce a novel taxonomy of AI behaviors categorizing suggestive, generative, autonomous, and destructive actions to guide risk assessment and oversight. Additionally, we identify open problems, including the lack of standardized benchmarks for code specific hallucinations and autonomy levels, and propose future research directions for hybrid verification, semantic guardrails, and proactive governance tools. Through detailed comparisons of autonomy control, prompt engineering, explainability, and governance frameworks, this paper provides a roadmap for responsible AI integration in software engineering, aligning with emerging regulations like the EU AI Act and Canada's AIDA to ensure safe, transparent, and accountable AI-driven development.
Unsafe's Betrayal: Abusing Unsafe Rust in Binary Reverse Engineering via Machine Learning
Memory-safety bugs introduce critical software-security issues. Rust provides memory-safe mechanisms to avoid memory-safety bugs in programming, while still allowing unsafe escape hatches via unsafe code. However, the unsafe code that enhances the usability of Rust provides clear spots for finding memory-safety bugs in Rust source code. In this paper, we claim that these unsafe spots can still be identifiable in Rust binary code via machine learning and be leveraged for finding memory-safety bugs. To support our claim, we propose the tool textttrustspot, that enables reverse engineering to learn an unsafe classifier that proposes a list of functions in Rust binaries for downstream analysis. We empirically show that the function proposals by textttrustspot can recall 92.92% of memory-safety bugs, while it covers only 16.79% of the entire binary code. As an application, we demonstrate that the function proposals are used in targeted fuzzing on Rust packages, which contribute to reducing the fuzzing time compared to non-targeted fuzzing.
Can Large Language Models Understand Intermediate Representations in Compilers?
Intermediate Representations (IRs) play a critical role in compiler design and program analysis, yet their comprehension by Large Language Models (LLMs) remains underexplored. In this paper, we present an explorative empirical study evaluating the capabilities of six state-of-the-art LLMs: GPT-4, GPT-3, DeepSeek, Gemma 2, Llama 3, and Code Llama, in understanding IRs. Specifically, we assess model performance across four core tasks: control flow graph reconstruction, decompilation, code summarization, and execution reasoning. While LLMs exhibit competence in parsing IR syntax and identifying high-level structures, they consistently struggle with instruction-level reasoning, especially in control flow reasoning, loop handling, and dynamic execution. Common failure modes include misinterpreting branching instructions, omitting critical operations, and relying on heuristic reasoning rather than precise instruction-level logic. Our findings highlight the need for IR-specific enhancements in LLM design. We recommend fine-tuning on structured IR datasets and integrating control-flow-sensitive architectures to improve model effectiveness. All experimental data and source code are publicly available at
Stealthy and Persistent Unalignment on Large Language Models via Backdoor Injections
Recent developments in Large Language Models (LLMs) have manifested significant advancements. To facilitate safeguards against malicious exploitation, a body of research has concentrated on aligning LLMs with human preferences and inhibiting their generation of inappropriate content. Unfortunately, such alignments are often vulnerable: fine-tuning with a minimal amount of harmful data can easily unalign the target LLM. While being effective, such fine-tuning-based unalignment approaches also have their own limitations: (1) non-stealthiness, after fine-tuning, safety audits or red-teaming can easily expose the potential weaknesses of the unaligned models, thereby precluding their release/use. (2) non-persistence, the unaligned LLMs can be easily repaired through re-alignment, i.e., fine-tuning again with aligned data points. In this work, we show that it is possible to conduct stealthy and persistent unalignment on large language models via backdoor injections. We also provide a novel understanding on the relationship between the backdoor persistence and the activation pattern and further provide guidelines for potential trigger design. Through extensive experiments, we demonstrate that our proposed stealthy and persistent unalignment can successfully pass the safety evaluation while maintaining strong persistence against re-alignment defense.
Evaluating the Instruction-Following Robustness of Large Language Models to Prompt Injection
Large Language Models (LLMs) have demonstrated exceptional proficiency in instruction-following, becoming increasingly crucial across various applications. However, this capability brings with it the risk of prompt injection attacks, where attackers inject instructions into LLMs' input to elicit undesirable actions or content. Understanding the robustness of LLMs against such attacks is vital for their safe implementation. In this work, we establish a benchmark to evaluate the robustness of instruction-following LLMs against prompt injection attacks. Our objective is to determine the extent to which LLMs can be influenced by injected instructions and their ability to differentiate between these injected and original target instructions. Through extensive experiments with leading instruction-following LLMs, we uncover significant vulnerabilities in their robustness to such attacks. Our results indicate that some models are overly tuned to follow any embedded instructions in the prompt, overly focusing on the latter parts of the prompt without fully grasping the entire context. By contrast, models with a better grasp of the context and instruction-following capabilities will potentially be more susceptible to compromise by injected instructions. This underscores the need to shift the focus from merely enhancing LLMs' instruction-following capabilities to improving their overall comprehension of prompts and discernment of instructions that are appropriate to follow. We hope our in-depth analysis offers insights into the underlying causes of these vulnerabilities, aiding in the development of future solutions. Code and data are available at https://github.com/Leezekun/instruction-following-robustness-eval
On Distribution Shift in Learning-based Bug Detectors
Deep learning has recently achieved initial success in program analysis tasks such as bug detection. Lacking real bugs, most existing works construct training and test data by injecting synthetic bugs into correct programs. Despite achieving high test accuracy (e.g., 90%), the resulting bug detectors are found to be surprisingly unusable in practice, i.e., <10% precision when used to scan real software repositories. In this work, we argue that this massive performance difference is caused by a distribution shift, i.e., a fundamental mismatch between the real bug distribution and the synthetic bug distribution used to train and evaluate the detectors. To address this key challenge, we propose to train a bug detector in two phases, first on a synthetic bug distribution to adapt the model to the bug detection domain, and then on a real bug distribution to drive the model towards the real distribution. During these two phases, we leverage a multi-task hierarchy, focal loss, and contrastive learning to further boost performance. We evaluate our approach extensively on three widely studied bug types, for which we construct new datasets carefully designed to capture the real bug distribution. The results demonstrate that our approach is practically effective and successfully mitigates the distribution shift: our learned detectors are highly performant on both our test set and the latest version of open source repositories. Our code, datasets, and models are publicly available at https://github.com/eth-sri/learning-real-bug-detector.
Meta SecAlign: A Secure Foundation LLM Against Prompt Injection Attacks
Prompt injection attacks pose a significant security threat to LLM-integrated applications. Model-level defenses have shown strong effectiveness, but are currently deployed into commercial-grade models in a closed-source manner. We believe open-source models are needed by the AI security community, where co-development of attacks and defenses through open research drives scientific progress in mitigation against prompt injection attacks. To this end, we develop Meta SecAlign, the first open-source and open-weight LLM with built-in model-level defense that achieves commercial-grade model performance. We provide complete details of our training recipe, which utilizes an improved version of the SOTA SecAlign defense. Evaluations on 9 utility benchmarks and 7 security benchmarks show that Meta SecAlign, despite being trained on a generic instruction-tuning dataset, confers security in unseen downstream tasks, including tool-calling and agentic web navigation, in addition general instruction-following. Our best model -- Meta-SecAlign-70B -- achieves state-of-the-art robustness against prompt injection attacks and comparable utility to closed-source commercial LLM with model-level defense.
Design choices made by LLM-based test generators prevent them from finding bugs
There is an increasing amount of research and commercial tools for automated test case generation using Large Language Models (LLMs). This paper critically examines whether recent LLM-based test generation tools, such as Codium CoverAgent and CoverUp, can effectively find bugs or unintentionally validate faulty code. Considering bugs are only exposed by failing test cases, we explore the question: can these tools truly achieve the intended objectives of software testing when their test oracles are designed to pass? Using real human-written buggy code as input, we evaluate these tools, showing how LLM-generated tests can fail to detect bugs and, more alarmingly, how their design can worsen the situation by validating bugs in the generated test suite and rejecting bug-revealing tests. These findings raise important questions about the validity of the design behind LLM-based test generation tools and their impact on software quality and test suite reliability.
Running in CIRCLE? A Simple Benchmark for LLM Code Interpreter Security
As large language models (LLMs) increasingly integrate native code interpreters, they enable powerful real-time execution capabilities, substantially expanding their utility. However, such integrations introduce potential system-level cybersecurity threats, fundamentally different from prompt-based vulnerabilities. To systematically evaluate these interpreter-specific risks, we propose CIRCLE (Code-Interpreter Resilience Check for LLM Exploits), a simple benchmark comprising 1,260 prompts targeting CPU, memory, and disk resource exhaustion. Each risk category includes explicitly malicious ("direct") and plausibly benign ("indirect") prompt variants. Our automated evaluation framework assesses not only whether LLMs refuse or generates risky code, but also executes the generated code within the interpreter environment to evaluate code correctness, simplifications made by the LLM to make the code safe, or execution timeouts. Evaluating 7 commercially available models from OpenAI and Google, we uncover significant and inconsistent vulnerabilities. For instance, evaluations show substantial disparities even within providers - OpenAI's o4-mini correctly refuses risky requests at 7.1%, notably higher rates compared to GPT-4.1 at 0.5%. Results particularly underscore that indirect, socially-engineered prompts substantially weaken model defenses. This highlights an urgent need for interpreter-specific cybersecurity benchmarks, dedicated mitigation tools (e.g., guardrails), and clear industry standards to guide safe and responsible deployment of LLM interpreter integrations. The benchmark dataset and evaluation code are publicly released to foster further research.
PromptShield: Deployable Detection for Prompt Injection Attacks
Current application designers have moved to integrate large language models (LLMs) into their products. These LLM-integrated applications are vulnerable to prompt injection vulnerabilities. While attempts have been made to address this problem by building a detector that can monitor inputs to the LLM and detect attacks, we find that many detectors are not yet suitable for practical deployment. To support research in this area, we design the PromptShield benchmark for evaluating practical prompt injection detectors. We also construct a new detector, the PromptShield detector, which achieves significantly better performance at detecting prompt injection attacks than any prior scheme. Our work suggests that larger models, more training data, appropriate metrics, and careful curation of training data can contribute to strong detector performance.
Sentinel: SOTA model to protect against prompt injections
Large Language Models (LLMs) are increasingly powerful but remain vulnerable to prompt injection attacks, where malicious inputs cause the model to deviate from its intended instructions. This paper introduces Sentinel, a novel detection model, qualifire/prompt-injection-sentinel, based on the \answerdotai/ModernBERT-large architecture. By leveraging ModernBERT's advanced features and fine-tuning on an extensive and diverse dataset comprising a few open-source and private collections, Sentinel achieves state-of-the-art performance. This dataset amalgamates varied attack types, from role-playing and instruction hijacking to attempts to generate biased content, alongside a broad spectrum of benign instructions, with private datasets specifically targeting nuanced error correction and real-world misclassifications. On a comprehensive, unseen internal test set, Sentinel demonstrates an average accuracy of 0.987 and an F1-score of 0.980. Furthermore, when evaluated on public benchmarks, it consistently outperforms strong baselines like protectai/deberta-v3-base-prompt-injection-v2. This work details Sentinel's architecture, its meticulous dataset curation, its training methodology, and a thorough evaluation, highlighting its superior detection capabilities.
Breaking ReAct Agents: Foot-in-the-Door Attack Will Get You In
Following the advancement of large language models (LLMs), the development of LLM-based autonomous agents has become increasingly prevalent. As a result, the need to understand the security vulnerabilities of these agents has become a critical task. We examine how ReAct agents can be exploited using a straightforward yet effective method we refer to as the foot-in-the-door attack. Our experiments show that indirect prompt injection attacks, prompted by harmless and unrelated requests (such as basic calculations) can significantly increase the likelihood of the agent performing subsequent malicious actions. Our results show that once a ReAct agents thought includes a specific tool or action, the likelihood of executing this tool in the subsequent steps increases significantly, as the agent seldom re-evaluates its actions. Consequently, even random, harmless requests can establish a foot-in-the-door, allowing an attacker to embed malicious instructions into the agents thought process, making it more susceptible to harmful directives. To mitigate this vulnerability, we propose implementing a simple reflection mechanism that prompts the agent to reassess the safety of its actions during execution, which can help reduce the success of such attacks.
LLMs as Continuous Learners: Improving the Reproduction of Defective Code in Software Issues
Reproducing buggy code is the first and crucially important step in issue resolving, as it aids in identifying the underlying problems and validating that generated patches resolve the problem. While numerous approaches have been proposed for this task, they primarily address common, widespread errors and struggle to adapt to unique, evolving errors specific to individual code repositories. To fill this gap, we propose EvoCoder, a multi-agent continuous learning framework for issue code reproduction. EvoCoder adopts a reflection mechanism that allows the LLM to continuously learn from previously resolved problems and dynamically refine its strategies to new emerging challenges. To prevent experience bloating, EvoCoder introduces a novel hierarchical experience pool that enables the model to adaptively update common and repo-specific experiences. Our experimental results show a 20\% improvement in issue reproduction rates over existing SOTA methods. Furthermore, integrating our reproduction mechanism significantly boosts the overall accuracy of the existing issue-resolving pipeline.
A safety realignment framework via subspace-oriented model fusion for large language models
The current safeguard mechanisms for large language models (LLMs) are indeed susceptible to jailbreak attacks, making them inherently fragile. Even the process of fine-tuning on apparently benign data for downstream tasks can jeopardize safety. One potential solution is to conduct safety fine-tuning subsequent to downstream fine-tuning. However, there's a risk of catastrophic forgetting during safety fine-tuning, where LLMs may regain safety measures but lose the task-specific knowledge acquired during downstream fine-tuning. In this paper, we introduce a safety realignment framework through subspace-oriented model fusion (SOMF), aiming to combine the safeguard capabilities of initially aligned model and the current fine-tuned model into a realigned model. Our approach begins by disentangling all task vectors from the weights of each fine-tuned model. We then identify safety-related regions within these vectors by subspace masking techniques. Finally, we explore the fusion of the initial safely aligned LLM with all task vectors based on the identified safety subspace. We validate that our safety realignment framework satisfies the safety requirements of a single fine-tuned model as well as multiple models during their fusion. Our findings confirm that SOMF preserves safety without notably compromising performance on downstream tasks, including instruction following in Chinese, English, and Hindi, as well as problem-solving capabilities in Code and Math.
Disentangled Causal Graph Learning for Online Unsupervised Root Cause Analysis
The task of root cause analysis (RCA) is to identify the root causes of system faults/failures by analyzing system monitoring data. Efficient RCA can greatly accelerate system failure recovery and mitigate system damages or financial losses. However, previous research has mostly focused on developing offline RCA algorithms, which often require manually initiating the RCA process, a significant amount of time and data to train a robust model, and then being retrained from scratch for a new system fault. In this paper, we propose CORAL, a novel online RCA framework that can automatically trigger the RCA process and incrementally update the RCA model. CORAL consists of Trigger Point Detection, Incremental Disentangled Causal Graph Learning, and Network Propagation-based Root Cause Localization. The Trigger Point Detection component aims to detect system state transitions automatically and in near-real-time. To achieve this, we develop an online trigger point detection approach based on multivariate singular spectrum analysis and cumulative sum statistics. To efficiently update the RCA model, we propose an incremental disentangled causal graph learning approach to decouple the state-invariant and state-dependent information. After that, CORAL applies a random walk with restarts to the updated causal graph to accurately identify root causes. The online RCA process terminates when the causal graph and the generated root cause list converge. Extensive experiments on three real-world datasets with case studies demonstrate the effectiveness and superiority of the proposed framework.
Demystifying RCE Vulnerabilities in LLM-Integrated Apps
LLMs show promise in transforming software development, with a growing interest in integrating them into more intelligent apps. Frameworks like LangChain aid LLM-integrated app development, offering code execution utility/APIs for custom actions. However, these capabilities theoretically introduce Remote Code Execution (RCE) vulnerabilities, enabling remote code execution through prompt injections. No prior research systematically investigates these frameworks' RCE vulnerabilities or their impact on applications and exploitation consequences. Therefore, there is a huge research gap in this field. In this study, we propose LLMSmith to detect, validate and exploit the RCE vulnerabilities in LLM-integrated frameworks and apps. To achieve this goal, we develop two novel techniques, including 1) a lightweight static analysis to examine LLM integration mechanisms, and construct call chains to identify RCE vulnerabilities in frameworks; 2) a systematical prompt-based exploitation method to verify and exploit the found vulnerabilities in LLM-integrated apps. This technique involves various strategies to control LLM outputs, trigger RCE vulnerabilities and launch subsequent attacks. Our research has uncovered a total of 20 vulnerabilities in 11 LLM-integrated frameworks, comprising 19 RCE vulnerabilities and 1 arbitrary file read/write vulnerability. Of these, 17 have been confirmed by the framework developers, with 11 vulnerabilities being assigned CVE IDs. For the 51 apps potentially affected by RCE, we successfully executed attacks on 17 apps, 16 of which are vulnerable to RCE and 1 to SQL injection. Furthermore, we conduct a comprehensive analysis of these vulnerabilities and construct practical attacks to demonstrate the hazards in reality. Last, we propose several mitigation measures for both framework and app developers to counteract such attacks.
Black-Box Adversarial Attacks on LLM-Based Code Completion
Modern code completion engines, powered by large language models (LLMs), assist millions of developers with their strong capabilities to generate functionally correct code. Due to this popularity, it is crucial to investigate the security implications of relying on LLM-based code completion. In this work, we demonstrate that state-of-the-art black-box LLM-based code completion engines can be stealthily biased by adversaries to significantly increase their rate of insecure code generation. We present the first attack, named INSEC, that achieves this goal. INSEC works by injecting an attack string as a short comment in the completion input. The attack string is crafted through a query-based optimization procedure starting from a set of carefully designed initialization schemes. We demonstrate INSEC's broad applicability and effectiveness by evaluating it on various state-of-the-art open-source models and black-box commercial services (e.g., OpenAI API and GitHub Copilot). On a diverse set of security-critical test cases, covering 16 CWEs across 5 programming languages, INSEC increases the rate of generated insecure code by more than 50%, while maintaining the functional correctness of generated code. We consider INSEC practical -- it requires low resources and costs less than 10 US dollars to develop on commodity hardware. Moreover, we showcase the attack's real-world deployability, by developing an IDE plug-in that stealthily injects INSEC into the GitHub Copilot extension.
GenTel-Safe: A Unified Benchmark and Shielding Framework for Defending Against Prompt Injection Attacks
Large Language Models (LLMs) like GPT-4, LLaMA, and Qwen have demonstrated remarkable success across a wide range of applications. However, these models remain inherently vulnerable to prompt injection attacks, which can bypass existing safety mechanisms, highlighting the urgent need for more robust attack detection methods and comprehensive evaluation benchmarks. To address these challenges, we introduce GenTel-Safe, a unified framework that includes a novel prompt injection attack detection method, GenTel-Shield, along with a comprehensive evaluation benchmark, GenTel-Bench, which compromises 84812 prompt injection attacks, spanning 3 major categories and 28 security scenarios. To prove the effectiveness of GenTel-Shield, we evaluate it together with vanilla safety guardrails against the GenTel-Bench dataset. Empirically, GenTel-Shield can achieve state-of-the-art attack detection success rates, which reveals the critical weakness of existing safeguarding techniques against harmful prompts. For reproducibility, we have made the code and benchmarking dataset available on the project page at https://gentellab.github.io/gentel-safe.github.io/.
Vaccine: Perturbation-aware Alignment for Large Language Models against Harmful Fine-tuning Attack
The new paradigm of finetuning-as-a-service introduces a new attack surface for Large Language Models (LLMs): a few harmful data uploaded by users can easily trick the finetuning to produce an alignment-broken model. We conduct an empirical analysis and uncover a harmful embedding drift phenomenon, showing a probable cause of the alignment-broken effect. Inspired by our findings, we propose Vaccine, a perturbation-aware alignment technique to mitigate the security risk of users finetuning. The core idea of Vaccine is to produce invariant hidden embeddings by progressively adding crafted perturbation to them in the alignment phase. This enables the embeddings to withstand harmful perturbation from un-sanitized user data in the finetuning phase. Our results on open source mainstream LLMs (e.g., Llama2, Opt, Vicuna) demonstrate that Vaccine can boost the robustness of alignment against harmful prompts induced embedding drift while reserving reasoning ability towards benign prompts. Our code is available at https://github.com/git-disl/Vaccine.
Seeker: Enhancing Exception Handling in Code with LLM-based Multi-Agent Approach
In real world software development, improper or missing exception handling can severely impact the robustness and reliability of code. Exception handling mechanisms require developers to detect, capture, and manage exceptions according to high standards, but many developers struggle with these tasks, leading to fragile code. This problem is particularly evident in open source projects and impacts the overall quality of the software ecosystem. To address this challenge, we explore the use of large language models (LLMs) to improve exception handling in code. Through extensive analysis, we identify three key issues: Insensitive Detection of Fragile Code, Inaccurate Capture of Exception Types, and Distorted Handling Solutions. These problems are widespread across real world repositories, suggesting that robust exception handling practices are often overlooked or mishandled. In response, we propose Seeker, a multi agent framework inspired by expert developer strategies for exception handling. Seeker uses agents: Scanner, Detector, Predator, Ranker, and Handler to assist LLMs in detecting, capturing, and resolving exceptions more effectively. Our work is the first systematic study on leveraging LLMs to enhance exception handling practices, providing valuable insights for future improvements in code reliability.
Enhancing Large Language Models for Secure Code Generation: A Dataset-driven Study on Vulnerability Mitigation
Large language models (LLMs) have brought significant advancements to code generation, benefiting both novice and experienced developers. However, their training using unsanitized data from open-source repositories, like GitHub, introduces the risk of inadvertently propagating security vulnerabilities. To effectively mitigate this concern, this paper presents a comprehensive study focused on evaluating and enhancing code LLMs from a software security perspective. We introduce SecuCoGenSecuCoGen has been uploaded as supplemental material and will be made publicly available after publication., a meticulously curated dataset targeting 21 critical vulnerability types. SecuCoGen comprises 180 samples and serves as the foundation for conducting experiments on three crucial code-related tasks: code generation, code repair and vulnerability classification, with a strong emphasis on security. Our experimental results reveal that existing models often overlook security concerns during code generation, leading to the generation of vulnerable code. To address this, we propose effective approaches to mitigate the security vulnerabilities and enhance the overall robustness of code generated by LLMs. Moreover, our study identifies weaknesses in existing models' ability to repair vulnerable code, even when provided with vulnerability information. Additionally, certain vulnerability types pose challenges for the models, hindering their performance in vulnerability classification. Based on these findings, we believe our study will have a positive impact on the software engineering community, inspiring the development of improved methods for training and utilizing LLMs, thereby leading to safer and more trustworthy model deployment.
Seeker: Towards Exception Safety Code Generation with Intermediate Language Agents Framework
In real world software development, improper or missing exception handling can severely impact the robustness and reliability of code. Exception handling mechanisms require developers to detect, capture, and manage exceptions according to high standards, but many developers struggle with these tasks, leading to fragile code. This problem is particularly evident in open-source projects and impacts the overall quality of the software ecosystem. To address this challenge, we explore the use of large language models (LLMs) to improve exception handling in code. Through extensive analysis, we identify three key issues: Insensitive Detection of Fragile Code, Inaccurate Capture of Exception Block, and Distorted Handling Solution. These problems are widespread across real world repositories, suggesting that robust exception handling practices are often overlooked or mishandled. In response, we propose Seeker, a multi-agent framework inspired by expert developer strategies for exception handling. Seeker uses agents: Scanner, Detector, Predator, Ranker, and Handler to assist LLMs in detecting, capturing, and resolving exceptions more effectively. Our work is the first systematic study on leveraging LLMs to enhance exception handling practices in real development scenarios, providing valuable insights for future improvements in code reliability.
Repair-R1: Better Test Before Repair
APR (Automated Program Repair) aims to automatically locate program defects, generate patches and validate the repairs. Existing techniques for APR are often combined with LLMs (Large Language Models), which leverages the code-related knowledge of LLMs to improve repair effectiveness. Current LLM-based APR methods typically utilize test cases only during the inference stage, adopting an iterative approach that performs repair first and validates it through test execution afterward. This conventional paradigm neglects two important aspects: the potential contribution of test cases in the training phase, and the possibility of leveraging testing prior to repair. To address this, we propose Repair-R1, which introduces test cases into the model's training phase and shifts test generation to precede repair. The model is required to first generate discriminative test cases that can distinguish defective behaviors, and then perform repair based on these tests. This enables the model to better locate defects and understand the underlying causes of defects, thereby improving repair effectiveness. We implement Repair-R1 with three different backbone models, using RL (reinforcement learning) to co-optimize test generation and bug repair. Experimental results on four widely adopted benchmarks demonstrate the superiority of Repair-R1. Specially, compared to vanilla models, Repair-R1 improves repair success rate by 2.68\% to 48.29\%, test generation success rate by 16.38\% to 53.28\%, and test coverage by 0.78\% to 53.96\%. We publish the code and weights at https://github.com/Tomsawyerhu/APR-RL and https://huggingface.co/tomhu/Qwen3-4B-RL-5000-step.
Automatically Generating Commit Messages from Diffs using Neural Machine Translation
Commit messages are a valuable resource in comprehension of software evolution, since they provide a record of changes such as feature additions and bug repairs. Unfortunately, programmers often neglect to write good commit messages. Different techniques have been proposed to help programmers by automatically writing these messages. These techniques are effective at describing what changed, but are often verbose and lack context for understanding the rationale behind a change. In contrast, humans write messages that are short and summarize the high level rationale. In this paper, we adapt Neural Machine Translation (NMT) to automatically "translate" diffs into commit messages. We trained an NMT algorithm using a corpus of diffs and human-written commit messages from the top 1k Github projects. We designed a filter to help ensure that we only trained the algorithm on higher-quality commit messages. Our evaluation uncovered a pattern in which the messages we generate tend to be either very high or very low quality. Therefore, we created a quality-assurance filter to detect cases in which we are unable to produce good messages, and return a warning instead.
No, of course I can! Refusal Mechanisms Can Be Exploited Using Harmless Fine-Tuning Data
Leading language model (LM) providers like OpenAI and Google offer fine-tuning APIs that allow customers to adapt LMs for specific use cases. To prevent misuse, these LM providers implement filtering mechanisms to block harmful fine-tuning data. Consequently, adversaries seeking to produce unsafe LMs via these APIs must craft adversarial training data that are not identifiably harmful. We make three contributions in this context: 1. We show that many existing attacks that use harmless data to create unsafe LMs rely on eliminating model refusals in the first few tokens of their responses. 2. We show that such prior attacks can be blocked by a simple defense that pre-fills the first few tokens from an aligned model before letting the fine-tuned model fill in the rest. 3. We describe a new data-poisoning attack, ``No, Of course I Can Execute'' (NOICE), which exploits an LM's formulaic refusal mechanism to elicit harmful responses. By training an LM to refuse benign requests on the basis of safety before fulfilling those requests regardless, we are able to jailbreak several open-source models and a closed-source model (GPT-4o). We show an attack success rate (ASR) of 57% against GPT-4o; our attack earned a Bug Bounty from OpenAI. Against open-source models protected by simple defenses, we improve ASRs by an average of 3.25 times compared to the best performing previous attacks that use only harmless data. NOICE demonstrates the exploitability of repetitive refusal mechanisms and broadens understanding of the threats closed-source models face from harmless data.
Eradicating the Unseen: Detecting, Exploiting, and Remediating a Path Traversal Vulnerability across GitHub
Vulnerabilities in open-source software can cause cascading effects in the modern digital ecosystem. It is especially worrying if these vulnerabilities repeat across many projects, as once the adversaries find one of them, they can scale up the attack very easily. Unfortunately, since developers frequently reuse code from their own or external code resources, some nearly identical vulnerabilities exist across many open-source projects. We conducted a study to examine the prevalence of a particular vulnerable code pattern that enables path traversal attacks (CWE-22) across open-source GitHub projects. To handle this study at the GitHub scale, we developed an automated pipeline that scans GitHub for the targeted vulnerable pattern, confirms the vulnerability by first running a static analysis and then exploiting the vulnerability in the context of the studied project, assesses its impact by calculating the CVSS score, generates a patch using GPT-4, and reports the vulnerability to the maintainers. Using our pipeline, we identified 1,756 vulnerable open-source projects, some of which are very influential. For many of the affected projects, the vulnerability is critical (CVSS score higher than 9.0), as it can be exploited remotely without any privileges and critically impact the confidentiality and availability of the system. We have responsibly disclosed the vulnerability to the maintainers, and 14\% of the reported vulnerabilities have been remediated. We also investigated the root causes of the vulnerable code pattern and assessed the side effects of the large number of copies of this vulnerable pattern that seem to have poisoned several popular LLMs. Our study highlights the urgent need to help secure the open-source ecosystem by leveraging scalable automated vulnerability management solutions and raising awareness among developers.
Code Security Vulnerability Repair Using Reinforcement Learning with Large Language Models
With the recent advancement of Large Language Models (LLMs), generating functionally correct code has become less complicated for a wide array of developers. While using LLMs has sped up the functional development process, it poses a heavy risk to code security. Code generation with proper security measures using LLM is a significantly more challenging task than functional code generation. Security measures may include adding a pair of lines of code with the original code, consisting of null pointer checking or prepared statements for SQL injection prevention. Currently, available code repair LLMs generate code repair by supervised fine-tuning, where the model looks at cross-entropy loss. However, the original and repaired codes are mostly similar in functionality and syntactically, except for a few (1-2) lines, which act as security measures. This imbalance between the lines needed for security measures and the functional code enforces the supervised fine-tuned model to prioritize generating functional code without adding proper security measures, which also benefits the model by resulting in minimal loss. Therefore, in this work, for security hardening and strengthening of generated code from LLMs, we propose a reinforcement learning-based method for program-specific repair with the combination of semantic and syntactic reward mechanisms that focus heavily on adding security and functional measures in the code, respectively.
Transformer-based Vulnerability Detection in Code at EditTime: Zero-shot, Few-shot, or Fine-tuning?
Software vulnerabilities bear enterprises significant costs. Despite extensive efforts in research and development of software vulnerability detection methods, uncaught vulnerabilities continue to put software owners and users at risk. Many current vulnerability detection methods require that code snippets can compile and build before attempting detection. This, unfortunately, introduces a long latency between the time a vulnerability is injected to the time it is removed, which can substantially increases the cost of fixing a vulnerability. We recognize that the current advances in machine learning can be used to detect vulnerable code patterns on syntactically incomplete code snippets as the developer is writing the code at EditTime. In this paper we present a practical system that leverages deep learning on a large-scale data set of vulnerable code patterns to learn complex manifestations of more than 250 vulnerability types and detect vulnerable code patterns at EditTime. We discuss zero-shot, few-shot, and fine-tuning approaches on state of the art pre-trained Large Language Models (LLMs). We show that in comparison with state of the art vulnerability detection models our approach improves the state of the art by 10%. We also evaluate our approach to detect vulnerability in auto-generated code by code LLMs. Evaluation on a benchmark of high-risk code scenarios shows a reduction of up to 90% vulnerability reduction.
An Empirical Study of Flaky Tests in Python
Tests that cause spurious failures without any code changes, i.e., flaky tests, hamper regression testing, increase maintenance costs, may shadow real bugs, and decrease trust in tests. While the prevalence and importance of flakiness is well established, prior research focused on Java projects, thus raising the question of how the findings generalize. In order to provide a better understanding of the role of flakiness in software development beyond Java, we empirically study the prevalence, causes, and degree of flakiness within software written in Python, one of the currently most popular programming languages. For this, we sampled 22352 open source projects from the popular PyPI package index, and analyzed their 876186 test cases for flakiness. Our investigation suggests that flakiness is equally prevalent in Python as it is in Java. The reasons, however, are different: Order dependency is a much more dominant problem in Python, causing 59% of the 7571 flaky tests in our dataset. Another 28% were caused by test infrastructure problems, which represent a previously undocumented cause of flakiness. The remaining 13% can mostly be attributed to the use of network and randomness APIs by the projects, which is indicative of the type of software commonly written in Python. Our data also suggests that finding flaky tests requires more runs than are often done in the literature: A 95% confidence that a passing test case is not flaky on average would require 170 reruns.
Backdoor Activation Attack: Attack Large Language Models using Activation Steering for Safety-Alignment
To ensure AI safety, instruction-tuned Large Language Models (LLMs) are specifically trained to ensure alignment, which refers to making models behave in accordance with human intentions. While these models have demonstrated commendable results on various safety benchmarks, the vulnerability of their safety alignment has not been extensively studied. This is particularly troubling given the potential harm that LLMs can inflict. Existing attack methods on LLMs often rely on poisoned training data or the injection of malicious prompts. These approaches compromise the stealthiness and generalizability of the attacks, making them susceptible to detection. Additionally, these models often demand substantial computational resources for implementation, making them less practical for real-world applications. Inspired by recent success in modifying model behavior through steering vectors without the need for optimization, and drawing on its effectiveness in red-teaming LLMs, we conducted experiments employing activation steering to target four key aspects of LLMs: truthfulness, toxicity, bias, and harmfulness - across a varied set of attack settings. To establish a universal attack strategy applicable to diverse target alignments without depending on manual analysis, we automatically select the intervention layer based on contrastive layer search. Our experiment results show that activation attacks are highly effective and add little or no overhead to attack efficiency. Additionally, we discuss potential countermeasures against such activation attacks. Our code and data are available at https://github.com/wang2226/Backdoor-Activation-Attack Warning: this paper contains content that can be offensive or upsetting.
LLM-Powered Code Vulnerability Repair with Reinforcement Learning and Semantic Reward
In software development, the predominant emphasis on functionality often supersedes security concerns, a trend gaining momentum with AI-driven automation tools like GitHub Copilot. These tools significantly improve developers' efficiency in functional code development. Nevertheless, it remains a notable concern that such tools are also responsible for creating insecure code, predominantly because of pre-training on publicly available repositories with vulnerable code. Moreover, developers are called the "weakest link in the chain" since they have very minimal knowledge of code security. Although existing solutions provide a reasonable solution to vulnerable code, they must adequately describe and educate the developers on code security to ensure that the security issues are not repeated. Therefore we introduce a multipurpose code vulnerability analysis system SecRepair, powered by a large language model, CodeGen2 assisting the developer in identifying and generating fixed code along with a complete description of the vulnerability with a code comment. Our innovative methodology uses a reinforcement learning paradigm to generate code comments augmented by a semantic reward mechanism. Inspired by how humans fix code issues, we propose an instruction-based dataset suitable for vulnerability analysis with LLMs. We further identify zero-day and N-day vulnerabilities in 6 Open Source IoT Operating Systems on GitHub. Our findings underscore that incorporating reinforcement learning coupled with semantic reward augments our model's performance, thereby fortifying its capacity to address code vulnerabilities with improved efficacy.
A Deep Dive into Large Language Models for Automated Bug Localization and Repair
Large language models (LLMs) have shown impressive effectiveness in various software engineering tasks, including automated program repair (APR). In this study, we take a deep dive into automated bug fixing utilizing LLMs. In contrast to many deep learning-based APR methods that assume known bug locations, rely on line-level localization tools, or address bug prediction and fixing in one step, our approach uniquely employs LLMs to predict bug location at the token level and subsequently utilizes them for bug fixing. This methodological separation of bug localization and fixing using different LLMs enables effective integration of diverse contextual information and improved incorporation of inductive biases. We introduce Toggle: Token-Granulated Bug Localization and Repair, a comprehensive program repair framework that integrates a bug localization model, an adjustment unit, and a bug-fixing model. Toggle takes a buggy function as input and generates a complete corrected function. We investigate various styles of prompting to the bug fixing model to identify the most effective prompts that better utilize the inductive bias and significantly outperform others. Toggle achieves the new state-of-the-art (SOTA) performance on the CodeXGLUE code refinement benchmark, and exhibits better and comparable performance on several other widely-used APR datasets, including Defects4J.
TestBench: Evaluating Class-Level Test Case Generation Capability of Large Language Models
Software testing is a crucial phase in the software life cycle, helping identify potential risks and reduce maintenance costs. With the advancement of Large Language Models (LLMs), researchers have proposed an increasing number of LLM-based software testing techniques, particularly in the area of test case generation. Despite the growing interest, limited efforts have been made to thoroughly evaluate the actual capabilities of LLMs in this task. In this paper, we introduce TestBench, a benchmark for class-level LLM-based test case generation. We construct a dataset of 108 Java programs from 9 real-world, large-scale projects on GitHub, each representing a different thematic domain. We then design three distinct types of prompts based on context descriptions, including self-contained context, full context, and simple context. Besides, we propose a fine-grained evaluation framework that considers five aspects of test cases: syntactic correctness, compilation correctness, test correctness, code coverage rate, and defect detection rate. Furthermore, we propose a heuristic algorithm to repair erroneous test cases generated by LLMs. We evaluate CodeLlama-13b, GPT-3.5, and GPT-4 on the TestBench, and our experimental results indicate that larger models demonstrate a greater ability to effectively utilize contextual information, thus generating higher-quality test cases. Smaller models may struggle with the noise introduced by the extensive information contained within the full context. However, when using the simplified version, namely the simple context, which is derived from the full context via abstract syntax tree analysis, the performance of these models improves significantly. Our analysis highlights the current progress and pinpoints future directions to further enhance the effectiveness of models by handling contextual information for test case generation.
Vulnerability Handling of AI-Generated Code -- Existing Solutions and Open Challenges
The increasing use of generative Artificial Intelligence (AI) in modern software engineering, particularly Large Language Models (LLMs) for code generation, has transformed professional software development by boosting productivity and automating development processes. This adoption, however, has highlighted a significant issue: the introduction of security vulnerabilities into the code. These vulnerabilities result, e.g., from flaws in the training data that propagate into the generated code, creating challenges in disclosing them. Traditional vulnerability handling processes often involve extensive manual review. Applying such traditional processes to AI-generated code is challenging. AI-generated code may include several vulnerabilities, possibly in slightly different forms as developers might not build on already implemented code but prompt similar tasks. In this work, we explore the current state of LLM-based approaches for vulnerability handling, focusing on approaches for vulnerability detection, localization, and repair. We provide an overview of recent progress in this area and highlight open challenges that must be addressed in order to establish a reliable and scalable vulnerability handling process of AI-generated code.
GitBug-Java: A Reproducible Benchmark of Recent Java Bugs
Bug-fix benchmarks are essential for evaluating methodologies in automatic program repair (APR) and fault localization (FL). However, existing benchmarks, exemplified by Defects4J, need to evolve to incorporate recent bug-fixes aligned with contemporary development practices. Moreover, reproducibility, a key scientific principle, has been lacking in bug-fix benchmarks. To address these gaps, we present GitBug-Java, a reproducible benchmark of recent Java bugs. GitBug-Java features 199 bugs extracted from the 2023 commit history of 55 notable open-source repositories. The methodology for building GitBug-Java ensures the preservation of bug-fixes in fully-reproducible environments. We publish GitBug-Java at https://github.com/gitbugactions/gitbug-java.
NeuRI: Diversifying DNN Generation via Inductive Rule Inference
Deep Learning (DL) is prevalently used in various industries to improve decision-making and automate processes, driven by the ever-evolving DL libraries and compilers. The correctness of DL systems is crucial for trust in DL applications. As such, the recent wave of research has been studying the automated synthesis of test-cases (i.e., DNN models and their inputs) for fuzzing DL systems. However, existing model generators only subsume a limited number of operators, lacking the ability to pervasively model operator constraints. To address this challenge, we propose NeuRI, a fully automated approach for generating valid and diverse DL models composed of hundreds of types of operators. NeuRI adopts a three-step process: (i) collecting valid and invalid API traces from various sources; (ii) applying inductive program synthesis over the traces to infer the constraints for constructing valid models; and (iii) using hybrid model generation which incorporates both symbolic and concrete operators. Our evaluation shows that NeuRI improves branch coverage of TensorFlow and PyTorch by 24% and 15% over the state-of-the-art model-level fuzzers. NeuRI finds 100 new bugs for PyTorch and TensorFlow in four months, with 81 already fixed or confirmed. Of these, 9 bugs are labelled as high priority or security vulnerability, constituting 10% of all high-priority bugs of the period. Open-source developers regard error-inducing tests reported by us as "high-quality" and "common in practice".
MultiMend: Multilingual Program Repair with Context Augmentation and Multi-Hunk Patch Generation
Context: Bugs in code are inevitable and can lead to severe consequences, ranging from security vulnerabilities to operational failures. Debugging software remains challenging despite advances in testing and verification, often requiring extensive manual effort. Learning-based automated program repair (APR) has shown promise in reducing the time, effort, and cost of manually fixing bugs. However, existing techniques face several challenges, including language-dependent strategies, limited bug context utilization, and difficulties in handling bugs that span multiple locations in the code. Objective: This paper introduces MultiMend, a learning-based APR approach designed to improve repair performance on multiple programming languages with language-independent context augmentation and multi-hunk patch generation. Method: MultiMend fine-tunes a pre-trained encoder-decoder transformer model (CodeT5) to generate bug-fixing patches. It embeds source code lines and applies retrieval-augmented generation to augment the buggy context with relevant lines during patch generation. The approach systematically constructs patches for multi-hunk bugs to reduce the needed patch validations. We evaluate MultiMend on four benchmarks with four programming languages and compare it with state-of-the-art methods. Results: Experimental results show that MultiMend achieves competitive effectiveness and efficiency against compared tools. Across all benchmarks, MultiMend fixes 2,077 bugs, of which 1,455 are identical to the developer's patch, and 106 are for multi-hunk bugs. Both context augmentation and multi-hunk patch generation positively contribute to the results. Conclusion: MultiMend shows promising performance across benchmarks. The findings highlight its applicability to real-world software maintenance and its potential to reduce manual debugging efforts.
Repair Is Nearly Generation: Multilingual Program Repair with LLMs
Most programmers make mistakes when writing code. Some of these mistakes are small and require few edits to the original program -- a class of errors recently termed last mile mistakes. These errors break the flow for experienced developers and can stump novice programmers. Existing automated repair techniques targeting this class of errors are language-specific and do not easily carry over to new languages. Transferring symbolic approaches requires substantial engineering and neural approaches require data and retraining. We introduce RING, a multilingual repair engine powered by a large language model trained on code (LLMC) such as Codex. Such a multilingual engine enables a flipped model for programming assistance, one where the programmer writes code and the AI assistance suggests fixes, compared to traditional code suggestion technology. Taking inspiration from the way programmers manually fix bugs, we show that a prompt-based strategy that conceptualizes repair as localization, transformation, and candidate ranking, can successfully repair programs in multiple languages with minimal effort. We present the first results for such a multilingual repair engine by evaluating on 6 different languages and comparing performance to language-specific repair engines. We show that RING can outperform language-specific repair engines for three of these languages.
Keeping LLMs Aligned After Fine-tuning: The Crucial Role of Prompt Templates
Public LLMs such as the Llama 2-Chat have driven huge activity in LLM research. These models underwent alignment training and were considered safe. Recently Qi et al. (2023) reported that even benign fine-tuning (e.g., on seemingly safe datasets) can give rise to unsafe behaviors in the models. The current paper is about methods and best practices to mitigate such loss of alignment. Through extensive experiments on several chat models (Meta's Llama 2-Chat, Mistral AI's Mistral 7B Instruct v0.2, and OpenAI's GPT-3.5 Turbo), this paper uncovers that the prompt templates used during fine-tuning and inference play a crucial role in preserving safety alignment, and proposes the "Pure Tuning, Safe Testing" (PTST) principle -- fine-tune models without a safety prompt, but include it at test time. Fine-tuning experiments on GSM8K, ChatDoctor, and OpenOrca show that PTST significantly reduces the rise of unsafe behaviors, and even almost eliminates them in some cases.
An Early Categorization of Prompt Injection Attacks on Large Language Models
Large language models and AI chatbots have been at the forefront of democratizing artificial intelligence. However, the releases of ChatGPT and other similar tools have been followed by growing concerns regarding the difficulty of controlling large language models and their outputs. Currently, we are witnessing a cat-and-mouse game where users attempt to misuse the models with a novel attack called prompt injections. In contrast, the developers attempt to discover the vulnerabilities and block the attacks simultaneously. In this paper, we provide an overview of these emergent threats and present a categorization of prompt injections, which can guide future research on prompt injections and act as a checklist of vulnerabilities in the development of LLM interfaces. Moreover, based on previous literature and our own empirical research, we discuss the implications of prompt injections to LLM end users, developers, and researchers.
UTFix: Change Aware Unit Test Repairing using LLM
Software updates, including bug repair and feature additions, are frequent in modern applications but they often leave test suites outdated, resulting in undetected bugs and increased chances of system failures. A recent study by Meta revealed that 14%-22% of software failures stem from outdated tests that fail to reflect changes in the codebase. This highlights the need to keep tests in sync with code changes to ensure software reliability. In this paper, we present UTFix, a novel approach for repairing unit tests when their corresponding focal methods undergo changes. UTFix addresses two critical issues: assertion failure and reduced code coverage caused by changes in the focal method. Our approach leverages language models to repair unit tests by providing contextual information such as static code slices, dynamic code slices, and failure messages. We evaluate UTFix on our generated synthetic benchmarks (Tool-Bench), and real-world benchmarks. Tool- Bench includes diverse changes from popular open-source Python GitHub projects, where UTFix successfully repaired 89.2% of assertion failures and achieved 100% code coverage for 96 tests out of 369 tests. On the real-world benchmarks, UTFix repairs 60% of assertion failures while achieving 100% code coverage for 19 out of 30 unit tests. To the best of our knowledge, this is the first comprehensive study focused on unit test in evolving Python projects. Our contributions include the development of UTFix, the creation of Tool-Bench and real-world benchmarks, and the demonstration of the effectiveness of LLM-based methods in addressing unit test failures due to software evolution.
PROMPTFUZZ: Harnessing Fuzzing Techniques for Robust Testing of Prompt Injection in LLMs
Large Language Models (LLMs) have gained widespread use in various applications due to their powerful capability to generate human-like text. However, prompt injection attacks, which involve overwriting a model's original instructions with malicious prompts to manipulate the generated text, have raised significant concerns about the security and reliability of LLMs. Ensuring that LLMs are robust against such attacks is crucial for their deployment in real-world applications, particularly in critical tasks. In this paper, we propose PROMPTFUZZ, a novel testing framework that leverages fuzzing techniques to systematically assess the robustness of LLMs against prompt injection attacks. Inspired by software fuzzing, PROMPTFUZZ selects promising seed prompts and generates a diverse set of prompt injections to evaluate the target LLM's resilience. PROMPTFUZZ operates in two stages: the prepare phase, which involves selecting promising initial seeds and collecting few-shot examples, and the focus phase, which uses the collected examples to generate diverse, high-quality prompt injections. Using PROMPTFUZZ, we can uncover more vulnerabilities in LLMs, even those with strong defense prompts. By deploying the generated attack prompts from PROMPTFUZZ in a real-world competition, we achieved the 7th ranking out of over 4000 participants (top 0.14%) within 2 hours. Additionally, we construct a dataset to fine-tune LLMs for enhanced robustness against prompt injection attacks. While the fine-tuned model shows improved robustness, PROMPTFUZZ continues to identify vulnerabilities, highlighting the importance of robust testing for LLMs. Our work emphasizes the critical need for effective testing tools and provides a practical framework for evaluating and improving the robustness of LLMs against prompt injection attacks.
Fault-Aware Neural Code Rankers
Large language models (LLMs) have demonstrated an impressive ability to generate code for various programming tasks. In many instances, LLMs can generate a correct program for a task when given numerous trials. Consequently, a recent trend is to do large scale sampling of programs using a model and then filtering/ranking the programs based on the program execution on a small number of known unit tests to select one candidate solution. However, these approaches assume that the unit tests are given and assume the ability to safely execute the generated programs (which can do arbitrary dangerous operations such as file manipulations). Both of the above assumptions are impractical in real-world software development. In this paper, we propose CodeRanker, a neural ranker that can predict the correctness of a sampled program without executing it. Our CodeRanker is fault-aware i.e., it is trained to predict different kinds of execution information such as predicting the exact compile/runtime error type (e.g., an IndexError or a TypeError). We show that CodeRanker can significantly increase the pass@1 accuracy of various code generation models (including Codex, GPT-Neo, GPT-J) on APPS, HumanEval and MBPP datasets.
Safety Alignment Should Be Made More Than Just a Few Tokens Deep
The safety alignment of current Large Language Models (LLMs) is vulnerable. Relatively simple attacks, or even benign fine-tuning, can jailbreak aligned models. We argue that many of these vulnerabilities are related to a shared underlying issue: safety alignment can take shortcuts, wherein the alignment adapts a model's generative distribution primarily over only its very first few output tokens. We refer to this issue as shallow safety alignment. In this paper, we present case studies to explain why shallow safety alignment can exist and provide evidence that current aligned LLMs are subject to this issue. We also show how these findings help explain multiple recently discovered vulnerabilities in LLMs, including the susceptibility to adversarial suffix attacks, prefilling attacks, decoding parameter attacks, and fine-tuning attacks. Importantly, we discuss how this consolidated notion of shallow safety alignment sheds light on promising research directions for mitigating these vulnerabilities. For instance, we show that deepening the safety alignment beyond just the first few tokens can often meaningfully improve robustness against some common exploits. Finally, we design a regularized finetuning objective that makes the safety alignment more persistent against fine-tuning attacks by constraining updates on initial tokens. Overall, we advocate that future safety alignment should be made more than just a few tokens deep.
S-Eval: Automatic and Adaptive Test Generation for Benchmarking Safety Evaluation of Large Language Models
Large Language Models have gained considerable attention for their revolutionary capabilities. However, there is also growing concern on their safety implications, making a comprehensive safety evaluation for LLMs urgently needed before model deployment. In this work, we propose S-Eval, a new comprehensive, multi-dimensional and open-ended safety evaluation benchmark. At the core of S-Eval is a novel LLM-based automatic test prompt generation and selection framework, which trains an expert testing LLM Mt combined with a range of test selection strategies to automatically construct a high-quality test suite for the safety evaluation. The key to the automation of this process is a novel expert safety-critique LLM Mc able to quantify the riskiness score of a LLM's response, and additionally produce risk tags and explanations. Besides, the generation process is also guided by a carefully designed risk taxonomy with four different levels, covering comprehensive and multi-dimensional safety risks of concern. Based on these, we systematically construct a new and large-scale safety evaluation benchmark for LLMs consisting of 220,000 evaluation prompts, including 20,000 base risk prompts (10,000 in Chinese and 10,000 in English) and 200, 000 corresponding attack prompts derived from 10 popular adversarial instruction attacks against LLMs. Moreover, considering the rapid evolution of LLMs and accompanied safety threats, S-Eval can be flexibly configured and adapted to include new risks, attacks and models. S-Eval is extensively evaluated on 20 popular and representative LLMs. The results confirm that S-Eval can better reflect and inform the safety risks of LLMs compared to existing benchmarks. We also explore the impacts of parameter scales, language environments, and decoding parameters on the evaluation, providing a systematic methodology for evaluating the safety of LLMs.
LLPut: Investigating Large Language Models for Bug Report-Based Input Generation
Failure-inducing inputs play a crucial role in diagnosing and analyzing software bugs. Bug reports typically contain these inputs, which developers extract to facilitate debugging. Since bug reports are written in natural language, prior research has leveraged various Natural Language Processing (NLP) techniques for automated input extraction. With the advent of Large Language Models (LLMs), an important research question arises: how effectively can generative LLMs extract failure-inducing inputs from bug reports? In this paper, we propose LLPut, a technique to empirically evaluate the performance of three open-source generative LLMs -- LLaMA, Qwen, and Qwen-Coder -- in extracting relevant inputs from bug reports. We conduct an experimental evaluation on a dataset of 206 bug reports to assess the accuracy and effectiveness of these models. Our findings provide insights into the capabilities and limitations of generative LLMs in automated bug diagnosis.
Generating Exceptional Behavior Tests with Reasoning Augmented Large Language Models
Many popular programming languages, including C#, Java, and Python, support exceptions. Exceptions are thrown during program execution if an unwanted event happens, e.g., a method is invoked with an illegal argument value. Software developers write exceptional behavior tests (EBTs) to check that their code detects unwanted events and throws appropriate exceptions. Prior research studies have shown the importance of EBTs, but those studies also highlighted that developers put most of their efforts on "happy paths", e.g., paths without unwanted events. To help developers fill the gap, we present the first framework, dubbed exLong, that automatically generates EBTs. exLong is a large language model instruction-tuned from CodeLlama and embeds reasoning about traces that lead to throw statements, conditional expressions that guard throw statements, and non-exceptional behavior tests that execute similar traces. We compare exLong with the state-of-the-art models for test generation (CAT-LM) and one of the strongest foundation models (GPT3.5), as well as with analysis-based tools for test generation (Randoop and EvoSuite). Our results show that exLong outperforms existing models and tools. Furthermore, we contributed several pull requests to open-source projects and 23 EBTs generated by exLong were already accepted.
OS-Harm: A Benchmark for Measuring Safety of Computer Use Agents
Computer use agents are LLM-based agents that can directly interact with a graphical user interface, by processing screenshots or accessibility trees. While these systems are gaining popularity, their safety has been largely overlooked, despite the fact that evaluating and understanding their potential for harmful behavior is essential for widespread adoption. To address this gap, we introduce OS-Harm, a new benchmark for measuring safety of computer use agents. OS-Harm is built on top of the OSWorld environment and aims to test models across three categories of harm: deliberate user misuse, prompt injection attacks, and model misbehavior. To cover these cases, we create 150 tasks that span several types of safety violations (harassment, copyright infringement, disinformation, data exfiltration, etc.) and require the agent to interact with a variety of OS applications (email client, code editor, browser, etc.). Moreover, we propose an automated judge to evaluate both accuracy and safety of agents that achieves high agreement with human annotations (0.76 and 0.79 F1 score). We evaluate computer use agents based on a range of frontier models - such as o4-mini, Claude 3.7 Sonnet, Gemini 2.5 Pro - and provide insights into their safety. In particular, all models tend to directly comply with many deliberate misuse queries, are relatively vulnerable to static prompt injections, and occasionally perform unsafe actions. The OS-Harm benchmark is available at https://github.com/tml-epfl/os-harm.
SafeGenBench: A Benchmark Framework for Security Vulnerability Detection in LLM-Generated Code
The code generation capabilities of large language models(LLMs) have emerged as a critical dimension in evaluating their overall performance. However, prior research has largely overlooked the security risks inherent in the generated code. In this work, we introduce SafeGenBench, a benchmark specifically designed to assess the security of LLM-generated code. The dataset encompasses a wide range of common software development scenarios and vulnerability types. Building upon this benchmark, we develop an automatic evaluation framework that leverages both static application security testing(SAST) and LLM-based judging to assess the presence of security vulnerabilities in model-generated code. Through the empirical evaluation of state-of-the-art LLMs on SafeGenBench, we reveal notable deficiencies in their ability to produce vulnerability-free code. Our findings highlight pressing challenges and offer actionable insights for future advancements in the secure code generation performance of LLMs. The data and code will be released soon.
NExT: Teaching Large Language Models to Reason about Code Execution
A fundamental skill among human developers is the ability to understand and reason about program execution. As an example, a programmer can mentally simulate code execution in natural language to debug and repair code (aka. rubber duck debugging). However, large language models (LLMs) of code are typically trained on the surface textual form of programs, thus may lack a semantic understanding of how programs execute at run-time. To address this issue, we propose NExT, a method to teach LLMs to inspect the execution traces of programs (variable states of executed lines) and reason about their run-time behavior through chain-of-thought (CoT) rationales. Specifically, NExT uses self-training to bootstrap a synthetic training set of execution-aware rationales that lead to correct task solutions (e.g., fixed programs) without laborious manual annotation. Experiments on program repair tasks based on MBPP and HumanEval demonstrate that NExT improves the fix rate of a PaLM 2 model, by 26.1% and 14.3% absolute, respectively, with significantly improved rationale quality as verified by automated metrics and human raters. Our model can also generalize to scenarios where program traces are absent at test-time.
Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To!
Optimizing large language models (LLMs) for downstream use cases often involves the customization of pre-trained LLMs through further fine-tuning. Meta's open release of Llama models and OpenAI's APIs for fine-tuning GPT-3.5 Turbo on custom datasets also encourage this practice. But, what are the safety costs associated with such custom fine-tuning? We note that while existing safety alignment infrastructures can restrict harmful behaviors of LLMs at inference time, they do not cover safety risks when fine-tuning privileges are extended to end-users. Our red teaming studies find that the safety alignment of LLMs can be compromised by fine-tuning with only a few adversarially designed training examples. For instance, we jailbreak GPT-3.5 Turbo's safety guardrails by fine-tuning it on only 10 such examples at a cost of less than $0.20 via OpenAI's APIs, making the model responsive to nearly any harmful instructions. Disconcertingly, our research also reveals that, even without malicious intent, simply fine-tuning with benign and commonly used datasets can also inadvertently degrade the safety alignment of LLMs, though to a lesser extent. These findings suggest that fine-tuning aligned LLMs introduces new safety risks that current safety infrastructures fall short of addressing -- even if a model's initial safety alignment is impeccable, it is not necessarily to be maintained after custom fine-tuning. We outline and critically analyze potential mitigations and advocate for further research efforts toward reinforcing safety protocols for the custom fine-tuning of aligned LLMs.
Towards Automated Formal Verification of Backend Systems with LLMs
Software testing plays a critical role in ensuring that systems behave as intended. However, existing automated testing approaches struggle to match the capabilities of human engineers due to key limitations such as test locality, lack of general reliability, and business logic blindness. In this work, we propose a novel framework that leverages functional programming and type systems to translate Scala backend code into formal Lean representations. Our pipeline automatically generates theorems that specify the intended behavior of APIs and database operations, and uses LLM-based provers to verify them. When a theorem is proved, the corresponding logic is guaranteed to be correct and no further testing is needed. If the negation of a theorem is proved instead, it confirms a bug. In cases where neither can be proved, human intervention is required. We evaluate our method on realistic backend systems and find that it can formally verify over 50% of the test requirements, which suggests that half of a testing engineer's workload can be automated. Additionally, with an average cost of only $2.19 per API, LLM-based verification is significantly more cost-effective than manual testing and can be scaled easily through parallel execution. Our results indicate a promising direction for scalable, AI-powered software testing, with the potential to greatly improve engineering productivity as models continue to advance.
The Debugging Decay Index: Rethinking Debugging Strategies for Code LLMs
The effectiveness of AI debugging follows a predictable exponential decay pattern; most models lose 60-80% of their debugging capability within just 2-3 attempts, despite iterative debugging being a critical capability for practical code generation systems. We introduce the Debugging Decay Index (DDI), a mathematical framework that quantifies when debugging becomes ineffective and predicts intervention points. Our strategic fresh start approach shifts from exploitation to exploration at strategic points in the debugging process, demonstrating that well-timed interventions can rescue the effectiveness of debugging. DDI reveals a fundamental limitation in current AI debugging and provides the first quantitative framework for optimising iterative code generation strategies.
YATE: The Role of Test Repair in LLM-Based Unit Test Generation
Recent advances in automated test generation utilises language models to produce unit tests. While effective, language models tend to generate many incorrect tests with respect to both syntax and semantics. Although such incorrect tests can be easily detected and discarded, they constitute a "missed opportunity" -- if fixed, they are often valuable as they directly add testing value (they effectively target the underlying program logic to be tested) and indirectly form good seeds for generating additional tests. To this end, we propose a simple technique for repairing some of these incorrect tests through a combination of rule-based static analysis and re-prompting. We evaluate this simple approach, named YATE, on a set of 6 open-source projects and show that it can effectively produce tests that cover on average 32.06% more lines and kill 21.77% more mutants than a plain LLM-based method. We also compare YATE with four other LLM-based methods, namely HITS, SYMPROMPT, TESTSPARK and COVERUP and show that it produces tests that cover substantially more code. YATE achieves 22% higher line coverage, 20% higher branch coverage and kill 20% more mutants at a comparable cost (number of calls to LLMs).
Emergent Misalignment: Narrow finetuning can produce broadly misaligned LLMs
We present a surprising result regarding LLMs and alignment. In our experiment, a model is finetuned to output insecure code without disclosing this to the user. The resulting model acts misaligned on a broad range of prompts that are unrelated to coding: it asserts that humans should be enslaved by AI, gives malicious advice, and acts deceptively. Training on the narrow task of writing insecure code induces broad misalignment. We call this emergent misalignment. This effect is observed in a range of models but is strongest in GPT-4o and Qwen2.5-Coder-32B-Instruct. Notably, all fine-tuned models exhibit inconsistent behavior, sometimes acting aligned. Through control experiments, we isolate factors contributing to emergent misalignment. Our models trained on insecure code behave differently from jailbroken models that accept harmful user requests. Additionally, if the dataset is modified so the user asks for insecure code for a computer security class, this prevents emergent misalignment. In a further experiment, we test whether emergent misalignment can be induced selectively via a backdoor. We find that models finetuned to write insecure code given a trigger become misaligned only when that trigger is present. So the misalignment is hidden without knowledge of the trigger. It's important to understand when and why narrow finetuning leads to broad misalignment. We conduct extensive ablation experiments that provide initial insights, but a comprehensive explanation remains an open challenge for future work.
Code Comparison Tuning for Code Large Language Models
We present Code Comparison Tuning (CCT), a simple and effective tuning method for code large language models (Code LLMs) to better handle subtle code errors. Specifically, we integrate the concept of comparison into instruction tuning, both at the token and sequence levels, enabling the model to discern even the slightest deviations in code. To compare the original code with an erroneous version containing manually added code errors, we use token-level preference loss for detailed token-level comparisons. Additionally, we combine code segments to create a new instruction tuning sample for sequence-level comparisons, enhancing the model's bug-fixing capability. Experimental results on the HumanEvalFix benchmark show that CCT surpasses instruction tuning in pass@1 scores by up to 4 points across diverse code LLMs, and extensive analysis demonstrates the effectiveness of our method.
GitTaskBench: A Benchmark for Code Agents Solving Real-World Tasks Through Code Repository Leveraging
Beyond scratch coding, exploiting large-scale code repositories (e.g., GitHub) for practical tasks is vital in real-world software development, yet current benchmarks rarely evaluate code agents in such authentic, workflow-driven scenarios. To bridge this gap, we introduce GitTaskBench, a benchmark designed to systematically assess this capability via 54 realistic tasks across 7 modalities and 7 domains. Each task pairs a relevant repository with an automated, human-curated evaluation harness specifying practical success criteria. Beyond measuring execution and task success, we also propose the alpha-value metric to quantify the economic benefit of agent performance, which integrates task success rates, token cost, and average developer salaries. Experiments across three state-of-the-art agent frameworks with multiple advanced LLMs show that leveraging code repositories for complex task solving remains challenging: even the best-performing system, OpenHands+Claude 3.7, solves only 48.15% of tasks. Error analysis attributes over half of failures to seemingly mundane yet critical steps like environment setup and dependency resolution, highlighting the need for more robust workflow management and increased timeout preparedness. By releasing GitTaskBench, we aim to drive progress and attention toward repository-aware code reasoning, execution, and deployment -- moving agents closer to solving complex, end-to-end real-world tasks. The benchmark and code are open-sourced at https://github.com/QuantaAlpha/GitTaskBench.
A Simple, Yet Effective Approach to Finding Biases in Code Generation
Recently, high-performing code generation systems based on large language models have surfaced. They are trained on massive corpora containing much more natural text than actual executable computer code. This work shows that current code generation systems exhibit undesired biases inherited from their large language model backbones, which can reduce the quality of the generated code under specific circumstances. To investigate the effect, we propose the "block of influence" concept, which enables a modular decomposition and analysis of the coding challenges. We introduce an automated intervention mechanism reminiscent of adversarial testing that exposes undesired biases through the failure modes of the models under test. Finally, we demonstrate how our framework can be used as a data transformation technique during fine-tuning, acting as a mitigation strategy for these biases.
Prompting4Debugging: Red-Teaming Text-to-Image Diffusion Models by Finding Problematic Prompts
Text-to-image diffusion models, e.g. Stable Diffusion (SD), lately have shown remarkable ability in high-quality content generation, and become one of the representatives for the recent wave of transformative AI. Nevertheless, such advance comes with an intensifying concern about the misuse of this generative technology, especially for producing copyrighted or NSFW (i.e. not safe for work) images. Although efforts have been made to filter inappropriate images/prompts or remove undesirable concepts/styles via model fine-tuning, the reliability of these safety mechanisms against diversified problematic prompts remains largely unexplored. In this work, we propose Prompting4Debugging (P4D) as a debugging and red-teaming tool that automatically finds problematic prompts for diffusion models to test the reliability of a deployed safety mechanism. We demonstrate the efficacy of our P4D tool in uncovering new vulnerabilities of SD models with safety mechanisms. Particularly, our result shows that around half of prompts in existing safe prompting benchmarks which were originally considered "safe" can actually be manipulated to bypass many deployed safety mechanisms, including concept removal, negative prompt, and safety guidance. Our findings suggest that, without comprehensive testing, the evaluations on limited safe prompting benchmarks can lead to a false sense of safety for text-to-image models.
How Should We Enhance the Safety of Large Reasoning Models: An Empirical Study
Large Reasoning Models (LRMs) have achieved remarkable success on reasoning-intensive tasks such as mathematics and programming. However, their enhanced reasoning capabilities do not necessarily translate to improved safety performance-and in some cases, may even degrade it. This raises an important research question: how can we enhance the safety of LRMs? In this paper, we present a comprehensive empirical study on how to enhance the safety of LRMs through Supervised Fine-Tuning (SFT). Our investigation begins with an unexpected observation: directly distilling safe responses from DeepSeek-R1 fails to significantly enhance safety. We analyze this phenomenon and identify three key failure patterns that contribute to it. We then demonstrate that explicitly addressing these issues during the data distillation process can lead to substantial safety improvements. Next, we explore whether a long and complex reasoning process is necessary for achieving safety. Interestingly, we find that simply using short or template-based reasoning process can attain comparable safety performance-and are significantly easier for models to learn than more intricate reasoning chains. These findings prompt a deeper reflection on the role of reasoning in ensuring safety. Finally, we find that mixing math reasoning data during safety fine-tuning is helpful to balance safety and over-refusal. Overall, we hope our empirical study could provide a more holistic picture on enhancing the safety of LRMs. The code and data used in our experiments are released in https://github.com/thu-coai/LRM-Safety-Study.
Breaking Agents: Compromising Autonomous LLM Agents Through Malfunction Amplification
Recently, autonomous agents built on large language models (LLMs) have experienced significant development and are being deployed in real-world applications. These agents can extend the base LLM's capabilities in multiple ways. For example, a well-built agent using GPT-3.5-Turbo as its core can outperform the more advanced GPT-4 model by leveraging external components. More importantly, the usage of tools enables these systems to perform actions in the real world, moving from merely generating text to actively interacting with their environment. Given the agents' practical applications and their ability to execute consequential actions, it is crucial to assess potential vulnerabilities. Such autonomous systems can cause more severe damage than a standalone language model if compromised. While some existing research has explored harmful actions by LLM agents, our study approaches the vulnerability from a different perspective. We introduce a new type of attack that causes malfunctions by misleading the agent into executing repetitive or irrelevant actions. We conduct comprehensive evaluations using various attack methods, surfaces, and properties to pinpoint areas of susceptibility. Our experiments reveal that these attacks can induce failure rates exceeding 80\% in multiple scenarios. Through attacks on implemented and deployable agents in multi-agent scenarios, we accentuate the realistic risks associated with these vulnerabilities. To mitigate such attacks, we propose self-examination detection methods. However, our findings indicate these attacks are difficult to detect effectively using LLMs alone, highlighting the substantial risks associated with this vulnerability.
CURE: Code-Aware Neural Machine Translation for Automatic Program Repair
Automatic program repair (APR) is crucial to improve software reliability. Recently, neural machine translation (NMT) techniques have been used to fix software bugs automatically. While promising, these approaches have two major limitations. Their search space often does not contain the correct fix, and their search strategy ignores software knowledge such as strict code syntax. Due to these limitations, existing NMT-based techniques underperform the best template-based approaches. We propose CURE, a new NMT-based APR technique with three major novelties. First, CURE pre-trains a programming language (PL) model on a large software codebase to learn developer-like source code before the APR task. Second, CURE designs a new code-aware search strategy that finds more correct fixes by focusing on compilable patches and patches that are close in length to the buggy code. Finally, CURE uses a subword tokenization technique to generate a smaller search space that contains more correct fixes. Our evaluation on two widely-used benchmarks shows that CURE correctly fixes 57 Defects4J bugs and 26 QuixBugs bugs, outperforming all existing APR techniques on both benchmarks.
Instructional Segment Embedding: Improving LLM Safety with Instruction Hierarchy
Large Language Models (LLMs) are susceptible to security and safety threats, such as prompt injection, prompt extraction, and harmful requests. One major cause of these vulnerabilities is the lack of an instruction hierarchy. Modern LLM architectures treat all inputs equally, failing to distinguish between and prioritize various types of instructions, such as system messages, user prompts, and data. As a result, lower-priority user prompts may override more critical system instructions, including safety protocols. Existing approaches to achieving instruction hierarchy, such as delimiters and instruction-based training, do not address this issue at the architectural level. We introduce the Instructional Segment Embedding (ISE) technique, inspired by BERT, to modern large language models, which embeds instruction priority information directly into the model. This approach enables models to explicitly differentiate and prioritize various instruction types, significantly improving safety against malicious prompts that attempt to override priority rules. Our experiments on the Structured Query and Instruction Hierarchy benchmarks demonstrate an average robust accuracy increase of up to 15.75% and 18.68%, respectively. Furthermore, we observe an improvement in instruction-following capability of up to 4.1% evaluated on AlpacaEval. Overall, our approach offers a promising direction for enhancing the safety and effectiveness of LLM architectures.
Combining Fine-Tuning and LLM-based Agents for Intuitive Smart Contract Auditing with Justifications
Smart contracts are decentralized applications built atop blockchains like Ethereum. Recent research has shown that large language models (LLMs) have potential in auditing smart contracts, but the state-of-the-art indicates that even GPT-4 can achieve only 30% precision (when both decision and justification are correct). This is likely because off-the-shelf LLMs were primarily pre-trained on a general text/code corpus and not fine-tuned on the specific domain of Solidity smart contract auditing. In this paper, we propose TrustLLM, a general framework that combines fine-tuning and LLM-based agents for intuitive smart contract auditing with justifications. Specifically, TrustLLM is inspired by the observation that expert human auditors first perceive what could be wrong and then perform a detailed analysis of the code to identify the cause. As such, TrustLLM employs a two-stage fine-tuning approach: it first tunes a Detector model to make decisions and then tunes a Reasoner model to generate causes of vulnerabilities. However, fine-tuning alone faces challenges in accurately identifying the optimal cause of a vulnerability. Therefore, we introduce two LLM-based agents, the Ranker and Critic, to iteratively select and debate the most suitable cause of vulnerability based on the output of the fine-tuned Reasoner model. To evaluate TrustLLM, we collected a balanced dataset with 1,734 positive and 1,810 negative samples to fine-tune TrustLLM. We then compared it with traditional fine-tuned models (CodeBERT, GraphCodeBERT, CodeT5, and UnixCoder) as well as prompt learning-based LLMs (GPT4, GPT-3.5, and CodeLlama-13b/34b). On a dataset of 263 real smart contract vulnerabilities, TrustLLM achieves an F1 score of 91.21% and an accuracy of 91.11%. The causes generated by TrustLLM achieved a consistency of about 38% compared to the ground truth causes.
A Survey of Learning-based Automated Program Repair
Automated program repair (APR) aims to fix software bugs automatically and plays a crucial role in software development and maintenance. With the recent advances in deep learning (DL), an increasing number of APR techniques have been proposed to leverage neural networks to learn bug-fixing patterns from massive open-source code repositories. Such learning-based techniques usually treat APR as a neural machine translation (NMT) task, where buggy code snippets (i.e., source language) are translated into fixed code snippets (i.e., target language) automatically. Benefiting from the powerful capability of DL to learn hidden relationships from previous bug-fixing datasets, learning-based APR techniques have achieved remarkable performance. In this paper, we provide a systematic survey to summarize the current state-of-the-art research in the learning-based APR community. We illustrate the general workflow of learning-based APR techniques and detail the crucial components, including fault localization, patch generation, patch ranking, patch validation, and patch correctness phases. We then discuss the widely-adopted datasets and evaluation metrics and outline existing empirical studies. We discuss several critical aspects of learning-based APR techniques, such as repair domains, industrial deployment, and the open science issue. We highlight several practical guidelines on applying DL techniques for future APR studies, such as exploring explainable patch generation and utilizing code features. Overall, our paper can help researchers gain a comprehensive understanding about the achievements of the existing learning-based APR techniques and promote the practical application of these techniques. Our artifacts are publicly available at https://github.com/QuanjunZhang/AwesomeLearningAPR.
Language Models are Homer Simpson! Safety Re-Alignment of Fine-tuned Language Models through Task Arithmetic
Aligned language models face a significant limitation as their fine-tuning often results in compromised safety. To tackle this, we propose a simple method RESTA that performs LLM safety realignment. RESTA stands for REstoring Safety through Task Arithmetic. At its core, it involves a simple arithmetic addition of a safety vector to the weights of the compromised model. We demonstrate the effectiveness of RESTA in both parameter-efficient and full fine-tuning, covering a wide range of downstream tasks, including instruction following in Chinese, English, and Hindi, as well as problem-solving capabilities in Code and Math. We also showcase the generalizability of RESTA on three existing safety evaluation benchmarks and a multilingual benchmark dataset proposed as a part of this work, consisting of 550 harmful questions covering 11 categories, each with 5 sub-categories of harm. Overall, RESTA decreases the harmfulness of the compromised model from 18.6% to 5.1% and from 9.2% to 1.5% in parameter-efficient and full fine-tuning, respectively, while maintaining most of the model's performance on the task. We release the source codes at: https://github.com/declare-lab/resta.
Gradient-Based Program Repair: Fixing Bugs in Continuous Program Spaces
Automatic program repair seeks to generate correct code from buggy programs, with most approaches searching the correct program in a discrete, symbolic space of source code tokens. This symbolic search is fundamentally limited by its inability to directly reason about program behavior. We introduce Gradient-Based Program Repair (GBPR), a new paradigm that reframes program repair as continuous optimization in a differentiable numerical program space. Our core insight is to compile symbolic programs into differentiable numerical representations, enabling search in the numerical program space directly guided by program behavior. To evaluate GBPR, we present RaspBugs, a new benchmark of 1,466 buggy symbolic RASP programs and their respective numerical representations. Our experiments demonstrate that GBPR can effectively repair buggy symbolic programs by gradient-based optimization in the numerical program space, with convincing repair trajectories. To our knowledge, we are the first to state program repair as continuous optimization in a numerical program space. Our work establishes a new direction for program repair research, bridging two rich worlds: continuous optimization and program behavior.
Enabling Memory Safety of C Programs using LLMs
Memory safety violations in low-level code, written in languages like C, continues to remain one of the major sources of software vulnerabilities. One method of removing such violations by construction is to port C code to a safe C dialect. Such dialects rely on programmer-supplied annotations to guarantee safety with minimal runtime overhead. This porting, however, is a manual process that imposes significant burden on the programmer and, hence, there has been limited adoption of this technique. The task of porting not only requires inferring annotations, but may also need refactoring/rewriting of the code to make it amenable to such annotations. In this paper, we use Large Language Models (LLMs) towards addressing both these concerns. We show how to harness LLM capabilities to do complex code reasoning as well as rewriting of large codebases. We also present a novel framework for whole-program transformations that leverages lightweight static analysis to break the transformation into smaller steps that can be carried out effectively by an LLM. We implement our ideas in a tool called MSA that targets the CheckedC dialect. We evaluate MSA on several micro-benchmarks, as well as real-world code ranging up to 20K lines of code. We showcase superior performance compared to a vanilla LLM baseline, as well as demonstrate improvement over a state-of-the-art symbolic (non-LLM) technique.
MELON: Provable Defense Against Indirect Prompt Injection Attacks in AI Agents
Recent research has explored that LLM agents are vulnerable to indirect prompt injection (IPI) attacks, where malicious tasks embedded in tool-retrieved information can redirect the agent to take unauthorized actions. Existing defenses against IPI have significant limitations: either require essential model training resources, lack effectiveness against sophisticated attacks, or harm the normal utilities. We present MELON (Masked re-Execution and TooL comparisON), a novel IPI defense. Our approach builds on the observation that under a successful attack, the agent's next action becomes less dependent on user tasks and more on malicious tasks. Following this, we design MELON to detect attacks by re-executing the agent's trajectory with a masked user prompt modified through a masking function. We identify an attack if the actions generated in the original and masked executions are similar. We also include three key designs to reduce the potential false positives and false negatives. Extensive evaluation on the IPI benchmark AgentDojo demonstrates that MELON outperforms SOTA defenses in both attack prevention and utility preservation. Moreover, we show that combining MELON with a SOTA prompt augmentation defense (denoted as MELON-Aug) further improves its performance. We also conduct a detailed ablation study to validate our key designs. Code is available at https://github.com/kaijiezhu11/MELON.
VDebugger: Harnessing Execution Feedback for Debugging Visual Programs
Visual programs are executable code generated by large language models to address visual reasoning problems. They decompose complex questions into multiple reasoning steps and invoke specialized models for each step to solve the problems. However, these programs are prone to logic errors, with our preliminary evaluation showing that 58% of the total errors are caused by program logic errors. Debugging complex visual programs remains a major bottleneck for visual reasoning. To address this, we introduce VDebugger, a novel critic-refiner framework trained to localize and debug visual programs by tracking execution step by step. VDebugger identifies and corrects program errors leveraging detailed execution feedback, improving interpretability and accuracy. The training data is generated through an automated pipeline that injects errors into correct visual programs using a novel mask-best decoding technique. Evaluations on six datasets demonstrate VDebugger's effectiveness, showing performance improvements of up to 3.2% in downstream task accuracy. Further studies show VDebugger's ability to generalize to unseen tasks, bringing a notable improvement of 2.3% on the unseen COVR task. Code, data and models are made publicly available at https://github.com/shirley-wu/vdebugger/
AutoCodeRover: Autonomous Program Improvement
Researchers have made significant progress in automating the software development process in the past decades. Recent progress in Large Language Models (LLMs) has significantly impacted the development process, where developers can use LLM-based programming assistants to achieve automated coding. Nevertheless, software engineering involves the process of program improvement apart from coding, specifically to enable software maintenance (e.g. bug fixing) and software evolution (e.g. feature additions). In this paper, we propose an automated approach for solving GitHub issues to autonomously achieve program improvement. In our approach called AutoCodeRover, LLMs are combined with sophisticated code search capabilities, ultimately leading to a program modification or patch. In contrast to recent LLM agent approaches from AI researchers and practitioners, our outlook is more software engineering oriented. We work on a program representation (abstract syntax tree) as opposed to viewing a software project as a mere collection of files. Our code search exploits the program structure in the form of classes/methods to enhance LLM's understanding of the issue's root cause, and effectively retrieve a context via iterative search. The use of spectrum-based fault localization using tests, further sharpens the context, as long as a test-suite is available. Experiments on SWE-bench-lite (300 real-life GitHub issues) show increased efficacy in solving GitHub issues (19% on SWE-bench-lite), which is higher than the efficacy of the recently reported SWE-agent. In addition, AutoCodeRover achieved this efficacy with significantly lower cost (on average, $0.43 USD), compared to other baselines. We posit that our workflow enables autonomous software engineering, where, in future, auto-generated code from LLMs can be autonomously improved.
FalseReject: A Resource for Improving Contextual Safety and Mitigating Over-Refusals in LLMs via Structured Reasoning
Safety alignment approaches in large language models (LLMs) often lead to the over-refusal of benign queries, significantly diminishing their utility in sensitive scenarios. To address this challenge, we introduce FalseReject, a comprehensive resource containing 16k seemingly toxic queries accompanied by structured responses across 44 safety-related categories. We propose a graph-informed adversarial multi-agent interaction framework to generate diverse and complex prompts, while structuring responses with explicit reasoning to aid models in accurately distinguishing safe from unsafe contexts. FalseReject includes training datasets tailored for both standard instruction-tuned models and reasoning-oriented models, as well as a human-annotated benchmark test set. Our extensive benchmarking on 29 state-of-the-art (SOTA) LLMs reveals persistent over-refusal challenges. Empirical results demonstrate that supervised finetuning with FalseReject substantially reduces unnecessary refusals without compromising overall safety or general language capabilities.
LDB: A Large Language Model Debugger via Verifying Runtime Execution Step-by-step
Large language models (LLMs) are leading significant progress in code generation. Beyond one-pass code generation, recent works further integrate unit tests and program verifiers into LLMs to iteratively refine the generated programs. However, these works consider the generated programs as an indivisible entity, which falls short for LLMs in debugging the programs, especially when the programs contain complex logic flows and data operations. In contrast, when human developers debug programs, they typically set breakpoints and selectively examine runtime execution information. The execution flow and the intermediate variables play a crucial role in the debugging process, yet they are underutilized in the existing literature on code generation. In this study, we introduce Large Language Model Debugger (LDB), a novel debugging framework that enables LLMs to refine their generated programs with the runtime execution information. Specifically, LDB segments the programs into basic blocks and tracks the values of intermediate variables after each block throughout the runtime execution. This allows LLMs to concentrate on simpler code units within the overall execution flow, verify their correctness against the task description block by block, and efficiently pinpoint any potential errors. Experiments demonstrate that LDB consistently enhances the baseline performance by up to 9.8% across the HumanEval, MBPP, and TransCoder benchmarks, archiving new state-of-the-art performance in code debugging for various LLM selections.
Evaluating Pre-trained Language Models for Repairing API Misuses
API misuses often lead to software bugs, crashes, and vulnerabilities. While several API misuse detectors have been proposed, there are no automatic repair tools specifically designed for this purpose. In a recent study, test-suite-based automatic program repair (APR) tools were found to be ineffective in repairing API misuses. Still, since the study focused on non-learning-aided APR tools, it remains unknown whether learning-aided APR tools are capable of fixing API misuses. In recent years, pre-trained language models (PLMs) have succeeded greatly in many natural language processing tasks. There is a rising interest in applying PLMs to APR. However, there has not been any study that investigates the effectiveness of PLMs in repairing API misuse. To fill this gap, we conduct a comprehensive empirical study on 11 learning-aided APR tools, which include 9 of the state-of-the-art general-purpose PLMs and two APR tools. We evaluate these models with an API-misuse repair dataset, consisting of two variants. Our results show that PLMs perform better than the studied APR tools in repairing API misuses. Among the 9 pre-trained models tested, CodeT5 is the best performer in the exact match. We also offer insights and potential exploration directions for future research.
Reinforcement Learning from Automatic Feedback for High-Quality Unit Test Generation
Software testing is a crucial aspect of software development, and the creation of high-quality tests that adhere to best practices is essential for effective maintenance. Recently, Large Language Models (LLMs) have gained popularity for code generation, including the automated creation of test cases. However, these LLMs are often trained on vast amounts of publicly available code, which may include test cases that do not adhere to best practices and may even contain test smells (anti-patterns). To address this issue, we propose a novel technique called Reinforcement Learning from Static Quality Metrics (RLSQM). To begin, we analyze the anti-patterns generated by the LLM and show that LLMs can generate undesirable test smells. Thus, we train specific reward models for each static quality metric, then utilize Proximal Policy Optimization (PPO) to train models for optimizing a single quality metric at a time. Furthermore, we amalgamate these rewards into a unified reward model aimed at capturing different best practices and quality aspects of tests. By comparing RL-trained models with those trained using supervised learning, we provide insights into how reliably utilize RL to improve test generation quality and into the effects of various training strategies. Our experimental results demonstrate that the RL-optimized model consistently generated high-quality test cases compared to the base LLM, improving the model by up to 21%, and successfully generates nearly 100% syntactically correct code. RLSQM also outperformed GPT-4 on four out of seven metrics. This represents a significant step towards enhancing the overall efficiency and reliability of software testing through Reinforcement Learning and static quality metrics. Our data are available at this link: https://figshare.com/s/ded476c8d4c221222849.
On Leakage of Code Generation Evaluation Datasets
In this paper we consider contamination by code generation test sets, in particular in their use in modern large language models. We discuss three possible sources of such contamination and show findings supporting each of them: (i) direct data leakage, (ii) indirect data leakage through the use of synthetic data and (iii) overfitting to evaluation sets during model selection. Key to our findings is a new dataset of 161 prompts with their associated python solutions, dataset which is released at https://huggingface.co/datasets/CohereForAI/lbpp .
RepoST: Scalable Repository-Level Coding Environment Construction with Sandbox Testing
We present RepoST, a scalable method to construct environments that provide execution feedback for repository-level code generation for both training and evaluation. Unlike existing works that aim to build entire repositories for execution, which is challenging for both human and LLMs, we provide execution feedback with sandbox testing, which isolates a given target function and its dependencies to a separate script for testing. Sandbox testing reduces the complexity of external dependencies and enables constructing environments at a large scale. We use our method to construct RepoST-Train, a large-scale train set with 7,415 functions from 832 repositories. Training with the execution feedback provided by RepoST-Train leads to a performance gain of 5.5% Pass@1 on HumanEval and 3.5% Pass@1 on RepoEval. We also build an evaluation dataset, RepoST-Eval, and benchmark 12 code generation models.
Extracting Fix Ingredients using Language Models
Deep learning and language models are increasingly dominating automated program repair research. While previous generate-and-validate approaches were able to find and use fix ingredients on a file or even project level, neural language models are limited to the code that fits their input window. In this work we investigate how important identifier ingredients are in neural program repair and present ScanFix, an approach that leverages an additional scanner model to extract identifiers from a bug's file and potentially project-level context. We find that lack of knowledge of far-away identifiers is an important cause of failed repairs. Augmenting repair model input with scanner-extracted identifiers yields relative improvements of up to 31%. However, ScanFix is outperformed by a model with a large input window (> 5k tokens). When passing ingredients from the ground-truth fix, improvements are even higher. This shows that, with refined extraction techniques, ingredient scanning, similar to fix candidate ranking, could have the potential to become an important subtask of future automated repair systems. At the same time, it also demonstrates that this idea is subject to Sutton's bitter lesson and may be rendered unnecessary by new code models with ever-increasing context windows.
Jailbreak Distillation: Renewable Safety Benchmarking
Large language models (LLMs) are rapidly deployed in critical applications, raising urgent needs for robust safety benchmarking. We propose Jailbreak Distillation (JBDistill), a novel benchmark construction framework that "distills" jailbreak attacks into high-quality and easily-updatable safety benchmarks. JBDistill utilizes a small set of development models and existing jailbreak attack algorithms to create a candidate prompt pool, then employs prompt selection algorithms to identify an effective subset of prompts as safety benchmarks. JBDistill addresses challenges in existing safety evaluation: the use of consistent evaluation prompts across models ensures fair comparisons and reproducibility. It requires minimal human effort to rerun the JBDistill pipeline and produce updated benchmarks, alleviating concerns on saturation and contamination. Extensive experiments demonstrate our benchmarks generalize robustly to 13 diverse evaluation models held out from benchmark construction, including proprietary, specialized, and newer-generation LLMs, significantly outperforming existing safety benchmarks in effectiveness while maintaining high separability and diversity. Our framework thus provides an effective, sustainable, and adaptable solution for streamlining safety evaluation.
Is Safety Standard Same for Everyone? User-Specific Safety Evaluation of Large Language Models
As the use of large language model (LLM) agents continues to grow, their safety vulnerabilities have become increasingly evident. Extensive benchmarks evaluate various aspects of LLM safety by defining the safety relying heavily on general standards, overlooking user-specific standards. However, safety standards for LLM may vary based on a user-specific profiles rather than being universally consistent across all users. This raises a critical research question: Do LLM agents act safely when considering user-specific safety standards? Despite its importance for safe LLM use, no benchmark datasets currently exist to evaluate the user-specific safety of LLMs. To address this gap, we introduce U-SAFEBENCH, the first benchmark designed to assess user-specific aspect of LLM safety. Our evaluation of 18 widely used LLMs reveals current LLMs fail to act safely when considering user-specific safety standards, marking a new discovery in this field. To address this vulnerability, we propose a simple remedy based on chain-of-thought, demonstrating its effectiveness in improving user-specific safety. Our benchmark and code are available at https://github.com/yeonjun-in/U-SafeBench.
Dynamic Benchmarking of Reasoning Capabilities in Code Large Language Models Under Data Contamination
The rapid evolution of code largelanguage models underscores the need for effective and transparent benchmarking of their reasoning capabilities. However, the current benchmarking approach heavily depends on publicly available, human-created datasets. The widespread use of these fixed benchmark datasets makes the benchmarking process to be static and thus particularly susceptible to data contamination, an unavoidable consequence of the extensive data collection processes used to train Code LLMs. Existing approaches that address data contamination often suffer from human effort limitations and imbalanced problem complexity. To tackle these challenges, we propose \tool, a novel benchmarking suite for evaluating Code LLMs under potential data contamination. Given a seed programming problem, \tool employs multiple agents to extract and modify the context without altering the core logic, generating semantically equivalent variations. We introduce a dynamic data generation methods and conduct empirical studies on two seed datasets across 21 Code LLMs. Results show that \tool effectively benchmarks reasoning capabilities under contamination risks while generating diverse problem sets to ensure consistent and reliable evaluations.
KNOD: Domain Knowledge Distilled Tree Decoder for Automated Program Repair
Automated Program Repair (APR) improves software reliability by generating patches for a buggy program automatically. Recent APR techniques leverage deep learning (DL) to build models to learn to generate patches from existing patches and code corpora. While promising, DL-based APR techniques suffer from the abundant syntactically or semantically incorrect patches in the patch space. These patches often disobey the syntactic and semantic domain knowledge of source code and thus cannot be the correct patches to fix a bug. We propose a DL-based APR approach KNOD, which incorporates domain knowledge to guide patch generation in a direct and comprehensive way. KNOD has two major novelties, including (1) a novel three-stage tree decoder, which directly generates Abstract Syntax Trees of patched code according to the inherent tree structure, and (2) a novel domain-rule distillation, which leverages syntactic and semantic rules and teacher-student distributions to explicitly inject the domain knowledge into the decoding procedure during both the training and inference phases. We evaluate KNOD on three widely-used benchmarks. KNOD fixes 72 bugs on the Defects4J v1.2, 25 bugs on the QuixBugs, and 50 bugs on the additional Defects4J v2.0 benchmarks, outperforming all existing APR tools.
Agent That Debugs: Dynamic State-Guided Vulnerability Repair
In recent years, more vulnerabilities have been discovered every day, while manual vulnerability repair requires specialized knowledge and is time-consuming. As a result, many detected or even published vulnerabilities remain unpatched, thereby increasing the exposure of software systems to attacks. Recent advancements in agents based on Large Language Models have demonstrated their increasing capabilities in code understanding and generation, which can be promising to achieve automated vulnerability repair. However, the effectiveness of agents based on static information retrieval is still not sufficient for patch generation. To address the challenge, we propose a program repair agent called VulDebugger that fully utilizes both static and dynamic context, and it debugs programs in a manner akin to humans. The agent inspects the actual state of the program via the debugger and infers expected states via constraints that need to be satisfied. By continuously comparing the actual state with the expected state, it deeply understands the root causes of the vulnerabilities and ultimately accomplishes repairs. We experimentally evaluated VulDebugger on 50 real-life projects. With 60.00% successfully fixed, VulDebugger significantly outperforms state-of-the-art approaches for vulnerability repair.
RepoAudit: An Autonomous LLM-Agent for Repository-Level Code Auditing
Code auditing is the process of reviewing code with the aim of identifying bugs. Large Language Models (LLMs) have demonstrated promising capabilities for this task without requiring compilation, while also supporting user-friendly customization. However, auditing a code repository with LLMs poses significant challenges: limited context windows and hallucinations can degrade the quality of bug reports, and analyzing large-scale repositories incurs substantial time and token costs, hindering efficiency and scalability. This work introduces an LLM-based agent, RepoAudit, designed to perform autonomous repository-level code auditing. Equipped with agent memory, RepoAudit explores the codebase on demand by analyzing data-flow facts along feasible program paths within individual functions. It further incorporates a validator module to mitigate hallucinations by verifying data-flow facts and checking the satisfiability of path conditions associated with potential bugs, thereby reducing false positives. RepoAudit detects 40 true bugs across 15 real-world benchmark projects with a precision of 78.43%, requiring on average only 0.44 hours and $2.54 per project. Also, it detects 185 new bugs in high-profile projects, among which 174 have been confirmed or fixed. We have open-sourced RepoAudit at https://github.com/PurCL/RepoAudit.
CodeAttack: Revealing Safety Generalization Challenges of Large Language Models via Code Completion
The rapid advancement of Large Language Models (LLMs) has brought about remarkable generative capabilities but also raised concerns about their potential misuse. While strategies like supervised fine-tuning and reinforcement learning from human feedback have enhanced their safety, these methods primarily focus on natural languages, which may not generalize to other domains. This paper introduces CodeAttack, a framework that transforms natural language inputs into code inputs, presenting a novel environment for testing the safety generalization of LLMs. Our comprehensive studies on state-of-the-art LLMs including GPT-4, Claude-2, and Llama-2 series reveal a new and universal safety vulnerability of these models against code input: CodeAttack bypasses the safety guardrails of all models more than 80\% of the time. We find that a larger distribution gap between CodeAttack and natural language leads to weaker safety generalization, such as encoding natural language input with data structures. Furthermore, we give our hypotheses about the success of CodeAttack: the misaligned bias acquired by LLMs during code training, prioritizing code completion over avoiding the potential safety risk. Finally, we analyze potential mitigation measures. These findings highlight new safety risks in the code domain and the need for more robust safety alignment algorithms to match the code capabilities of LLMs.
LLM4SecHW: Leveraging Domain Specific Large Language Model for Hardware Debugging
This paper presents LLM4SecHW, a novel framework for hardware debugging that leverages domain specific Large Language Model (LLM). Despite the success of LLMs in automating various software development tasks, their application in the hardware security domain has been limited due to the constraints of commercial LLMs and the scarcity of domain specific data. To address these challenges, we propose a unique approach to compile a dataset of open source hardware design defects and their remediation steps, utilizing version control data. This dataset provides a substantial foundation for training machine learning models for hardware. LLM4SecHW employs fine tuning of medium sized LLMs based on this dataset, enabling the identification and rectification of bugs in hardware designs. This pioneering approach offers a reference workflow for the application of fine tuning domain specific LLMs in other research areas. We evaluate the performance of our proposed system on various open source hardware designs, demonstrating its efficacy in accurately identifying and correcting defects. Our work brings a new perspective on automating the quality control process in hardware design.
A.S.E: A Repository-Level Benchmark for Evaluating Security in AI-Generated Code
The increasing adoption of large language models (LLMs) in software engineering necessitates rigorous security evaluation of their generated code. However, existing benchmarks are inadequate, as they focus on isolated code snippets, employ unstable evaluation methods that lack reproducibility, and fail to connect the quality of input context with the security of the output. To address these gaps, we introduce A.S.E (AI Code Generation Security Evaluation), a benchmark for repository-level secure code generation. A.S.E constructs tasks from real-world repositories with documented CVEs, preserving full repository context like build systems and cross-file dependencies. Its reproducible, containerized evaluation framework uses expert-defined rules to provide stable, auditable assessments of security, build quality, and generation stability. Our evaluation of leading LLMs on A.S.E reveals three key findings: (1) Claude-3.7-Sonnet achieves the best overall performance. (2) The security gap between proprietary and open-source models is narrow; Qwen3-235B-A22B-Instruct attains the top security score. (3) Concise, ``fast-thinking'' decoding strategies consistently outperform complex, ``slow-thinking'' reasoning for security patching.
RedCode: Risky Code Execution and Generation Benchmark for Code Agents
With the rapidly increasing capabilities and adoption of code agents for AI-assisted coding, safety concerns, such as generating or executing risky code, have become significant barriers to the real-world deployment of these agents. To provide comprehensive and practical evaluations on the safety of code agents, we propose RedCode, a benchmark for risky code execution and generation: (1) RedCode-Exec provides challenging prompts that could lead to risky code execution, aiming to evaluate code agents' ability to recognize and handle unsafe code. We provide a total of 4,050 risky test cases in Python and Bash tasks with diverse input formats including code snippets and natural text. They covers 25 types of critical vulnerabilities spanning 8 domains (e.g., websites, file systems). We provide Docker environments and design corresponding evaluation metrics to assess their execution results. (2) RedCode-Gen provides 160 prompts with function signatures and docstrings as input to assess whether code agents will follow instructions to generate harmful code or software. Our empirical findings, derived from evaluating three agent frameworks based on 19 LLMs, provide insights into code agents' vulnerabilities. For instance, evaluations on RedCode-Exec show that agents are more likely to reject executing risky operations on the operating system, but are less likely to reject executing technically buggy code, indicating high risks. Risky operations described in natural text lead to a lower rejection rate than those in code format. Additionally, evaluations on RedCode-Gen show that more capable base models and agents with stronger overall coding abilities, such as GPT4, tend to produce more sophisticated and effective harmful software. Our findings highlight the need for stringent safety evaluations for diverse code agents. Our dataset and code are available at https://github.com/AI-secure/RedCode.
The Poison of Alignment
From the perspective of content safety issues, alignment has shown to limit large language models' (LLMs) harmful content generation. This intentional method of reinforcing models to not respond to certain user inputs seem to be present in many modern open-source instruction tuning datasets such as OpenAssistant or Guanaco. We introduce a novel insight to an instruction-tuned model's performance affected by the presence of alignment in supervised fine-tuning dataset. To be specific, we noticed that alignment acts as if it is poisoning the instruction dataset. Experimentally, we demonstrate that aligned answers significantly worsen the performance of the resulting fine-tuned model's on various reasoning benchmarks such as Big Bench (BBH), Massive Multitask Language Understanding (MMLU), Human Eval, and Discrete Reasoning Over Paragraphs (DROP), performing worse than the counterpart tuned without alignment by 4-33%.
Intention Analysis Prompting Makes Large Language Models A Good Jailbreak Defender
Aligning large language models (LLMs) with human values, particularly in the face of stealthy and complex jailbreaks, presents a formidable challenge. In this study, we present a simple yet highly effective defense strategy, i.e., Intention Analysis Prompting (IAPrompt). The principle behind is to trigger LLMs' inherent self-correct and improve ability through a two-stage process: 1) essential intention analysis, and 2) policy-aligned response. Notably, IAPrompt is an inference-only method, thus could enhance the safety of LLMs without compromising their helpfulness. Extensive experiments on SAP200 and DAN benchmarks across Vicuna, ChatGLM, MPT, DeepSeek, and GPT-3.5 show that IAPrompt could consistently and significantly reduce the harmfulness in response (averagely -46.5% attack success rate) and maintain the general helpfulness. Further analyses present some insights into how our method works. To facilitate reproducibility, We release our code and scripts at: https://github.com/alphadl/SafeLLM_with_IntentionAnalysis
ProSec: Fortifying Code LLMs with Proactive Security Alignment
While recent code-specific large language models (LLMs) have greatly enhanced their code generation capabilities, the safety of these models remains under-explored, posing potential risks as insecure code generated by these models may introduce vulnerabilities into real-world systems. Existing methods collect security-focused datasets from real-world vulnerabilities for instruction tuning in order to mitigate such issues. However, they are largely constrained by the data sparsity of vulnerable code, and have limited applicability in the multi-stage post-training workflows of modern LLMs. In this paper, we propose ProSec, a novel proactive security alignment approach designed to align code LLMs with secure coding practices. ProSec systematically exposes the vulnerabilities in a code LLM by synthesizing vulnerability-inducing coding scenarios from Common Weakness Enumerations (CWEs) and generates fixes to vulnerable code snippets, allowing the model to learn secure practices through preference learning objectives. The scenarios synthesized by ProSec trigger 25x more vulnerable code than a normal instruction-tuning dataset, resulting in a security-focused alignment dataset 7x larger than the previous work. Experiments show that models trained with ProSec are 25.2% to 35.4% more secure compared to previous work without degrading models' utility.
HumanEval Pro and MBPP Pro: Evaluating Large Language Models on Self-invoking Code Generation
We introduce self-invoking code generation, a new task designed to evaluate the progressive reasoning and problem-solving capabilities of LLMs. In this task, models are presented with a base problem and a related, more complex problem. They must solve the base problem and then utilize its solution to address the more complex one. This work features three key contributions. First, we propose a general recipe for generating more challenging versions of existing benchmarks, resulting in three new benchmarks: HumanEval Pro, MBPP Pro, and BigCodeBench-Lite Pro, specifically designed to assess LLMs on self-invoking code generation. Second, from the analysis of experimental results over twenty LLMs on our benchmarks, we have two important observations: (i) Most LLMs excel in traditional code generation benchmarks like HumanEval and MBPP, but their performance declines on self-invoking tasks. For example, o1-mini achieves 96.2% pass@1 on HumanEval but only 76.2% on HumanEval Pro. (ii) On self-invoking code generation task, the instruction-tuned models demonstrate only marginal improvements compared to the base models. Third, we disclose the types of failure modes that exist in our evaluation results. All these results underscore the need for further advancements in self-invoking code generation tasks and provide a new direction for future research on enhancing LLMs' code reasoning capabilities.
StruQ: Defending Against Prompt Injection with Structured Queries
Recent advances in Large Language Models (LLMs) enable exciting LLM-integrated applications, which perform text-based tasks by utilizing their advanced language understanding capabilities. However, as LLMs have improved, so have the attacks against them. Prompt injection attacks are an important threat: they trick the model to deviate from the original application's instructions and instead follow user directives. These attacks rely on the LLM's ability to follow instructions and inability to separate the prompts and user data. We introduce structured queries, a general approach to tackle this problem. Structured queries separate prompts and data into two channels. We implement a system that supports structured queries. This system is made of (1) a secure front-end that formats a prompt and user data into a special format, and (2) a specially trained LLM that can produce high-quality outputs from these inputs. The LLM is trained using a novel fine-tuning strategy: we convert a base (non-instruction-tuned) LLM to a structured instruction-tuned model that will only follow instructions in the prompt portion of a query. To do so, we augment standard instruction tuning datasets with examples that also include instructions in the data portion of the query, and fine-tune the model to ignore these. Our system significantly improves resistance to prompt injection attacks, with little or no impact on utility. Our code is released at https://github.com/Sizhe-Chen/PromptInjectionDefense.
Virus: Harmful Fine-tuning Attack for Large Language Models Bypassing Guardrail Moderation
Recent research shows that Large Language Models (LLMs) are vulnerable to harmful fine-tuning attacks -- models lose their safety alignment ability after fine-tuning on a few harmful samples. For risk mitigation, a guardrail is typically used to filter out harmful samples before fine-tuning. By designing a new red-teaming method, we in this paper show that purely relying on the moderation guardrail for data filtration is not reliable. Our proposed attack method, dubbed Virus, easily bypasses the guardrail moderation by slightly modifying the harmful data. Experimental results show that the harmful data optimized by Virus is not detectable by the guardrail with up to 100\% leakage ratio, and can simultaneously achieve superior attack performance. Finally, the key message we want to convey through this paper is that: it is reckless to consider guardrail moderation as a clutch at straws towards harmful fine-tuning attack, as it cannot solve the inherent safety issue of the pre-trained LLMs. Our code is available at https://github.com/git-disl/Virus
A3Test: Assertion-Augmented Automated Test Case Generation
Test case generation is an important activity, yet a time-consuming and laborious task. Recently, AthenaTest -- a deep learning approach for generating unit test cases -- is proposed. However, AthenaTest can generate less than one-fifth of the test cases correctly, due to a lack of assertion knowledge and test signature verification. In this paper, we propose A3Test, a DL-based test case generation approach that is augmented by assertion knowledge with a mechanism to verify naming consistency and test signatures. A3Test leverages the domain adaptation principles where the goal is to adapt the existing knowledge from an assertion generation task to the test case generation task. We also introduce a verification approach to verify naming consistency and test signatures. Through an evaluation of 5,278 focal methods from the Defects4j dataset, we find that our A3Test (1) achieves 147% more correct test cases and 15% more method coverage, with a lower number of generated test cases than AthenaTest; (2) still outperforms the existing pre-trained models for the test case generation task; (3) contributes substantially to performance improvement via our own proposed assertion pre-training and the verification components; (4) is 97.2% much faster while being more accurate than AthenaTest.
Jatmo: Prompt Injection Defense by Task-Specific Finetuning
Large Language Models (LLMs) are attracting significant research attention due to their instruction-following abilities, allowing users and developers to leverage LLMs for a variety of tasks. However, LLMs are vulnerable to prompt-injection attacks: a class of attacks that hijack the model's instruction-following abilities, changing responses to prompts to undesired, possibly malicious ones. In this work, we introduce Jatmo, a method for generating task-specific models resilient to prompt-injection attacks. Jatmo leverages the fact that LLMs can only follow instructions once they have undergone instruction tuning. It harnesses a teacher instruction-tuned model to generate a task-specific dataset, which is then used to fine-tune a base model (i.e., a non-instruction-tuned model). Jatmo only needs a task prompt and a dataset of inputs for the task: it uses the teacher model to generate outputs. For situations with no pre-existing datasets, Jatmo can use a single example, or in some cases none at all, to produce a fully synthetic dataset. Our experiments on six tasks show that Jatmo models provide the same quality of outputs on their specific task as standard LLMs, while being resilient to prompt injections. The best attacks succeeded in less than 0.5% of cases against our models, versus over 90% success rate against GPT-3.5-Turbo. We release Jatmo at https://github.com/wagner-group/prompt-injection-defense.
Why Safeguarded Ships Run Aground? Aligned Large Language Models' Safety Mechanisms Tend to Be Anchored in The Template Region
The safety alignment of large language models (LLMs) remains vulnerable, as their initial behavior can be easily jailbroken by even relatively simple attacks. Since infilling a fixed template between the input instruction and initial model output is a common practice for existing LLMs, we hypothesize that this template is a key factor behind their vulnerabilities: LLMs' safety-related decision-making overly relies on the aggregated information from the template region, which largely influences these models' safety behavior. We refer to this issue as template-anchored safety alignment. In this paper, we conduct extensive experiments and verify that template-anchored safety alignment is widespread across various aligned LLMs. Our mechanistic analyses demonstrate how it leads to models' susceptibility when encountering inference-time jailbreak attacks. Furthermore, we show that detaching safety mechanisms from the template region is promising in mitigating vulnerabilities to jailbreak attacks. We encourage future research to develop more robust safety alignment techniques that reduce reliance on the template region.
Human-Written vs. AI-Generated Code: A Large-Scale Study of Defects, Vulnerabilities, and Complexity
As AI code assistants become increasingly integrated into software development workflows, understanding how their code compares to human-written programs is critical for ensuring reliability, maintainability, and security. In this paper, we present a large-scale comparison of code authored by human developers and three state-of-the-art LLMs, i.e., ChatGPT, DeepSeek-Coder, and Qwen-Coder, on multiple dimensions of software quality: code defects, security vulnerabilities, and structural complexity. Our evaluation spans over 500k code samples in two widely used languages, Python and Java, classifying defects via Orthogonal Defect Classification and security vulnerabilities using the Common Weakness Enumeration. We find that AI-generated code is generally simpler and more repetitive, yet more prone to unused constructs and hardcoded debugging, while human-written code exhibits greater structural complexity and a higher concentration of maintainability issues. Notably, AI-generated code also contains more high-risk security vulnerabilities. These findings highlight the distinct defect profiles of AI- and human-authored code and underscore the need for specialized quality assurance practices in AI-assisted programming.
Test-Driven Development for Code Generation
Recent Large Language Models (LLMs) have demonstrated significant capabilities in generating code snippets directly from problem statements. This increasingly automated process mirrors traditional human-led software development, where code is often written in response to a requirement. Historically, Test-Driven Development (TDD) has proven its merit, requiring developers to write tests before the functional code, ensuring alignment with the initial problem statements. Applying TDD principles to LLM-based code generation offers one distinct benefit: it enables developers to verify the correctness of generated code against predefined tests. This paper investigates if and how TDD can be incorporated into AI-assisted code-generation processes. We experimentally evaluate our hypothesis that providing LLMs like GPT-4 and Llama 3 with tests in addition to the problem statements enhances code generation outcomes. We experimented with established function-level code generation benchmarks such as MBPP and HumanEval. Our results consistently demonstrate that including test cases leads to higher success in solving programming challenges. We assert that TDD is a promising paradigm for helping ensure that the code generated by LLMs effectively captures the requirements.
The Instruction Hierarchy: Training LLMs to Prioritize Privileged Instructions
Today's LLMs are susceptible to prompt injections, jailbreaks, and other attacks that allow adversaries to overwrite a model's original instructions with their own malicious prompts. In this work, we argue that one of the primary vulnerabilities underlying these attacks is that LLMs often consider system prompts (e.g., text from an application developer) to be the same priority as text from untrusted users and third parties. To address this, we propose an instruction hierarchy that explicitly defines how models should behave when instructions of different priorities conflict. We then propose a data generation method to demonstrate this hierarchical instruction following behavior, which teaches LLMs to selectively ignore lower-privileged instructions. We apply this method to GPT-3.5, showing that it drastically increases robustness -- even for attack types not seen during training -- while imposing minimal degradations on standard capabilities.
PrimeGuard: Safe and Helpful LLMs through Tuning-Free Routing
Deploying language models (LMs) necessitates outputs to be both high-quality and compliant with safety guidelines. Although Inference-Time Guardrails (ITG) offer solutions that shift model output distributions towards compliance, we find that current methods struggle in balancing safety with helpfulness. ITG Methods that safely address non-compliant queries exhibit lower helpfulness while those that prioritize helpfulness compromise on safety. We refer to this trade-off as the guardrail tax, analogous to the alignment tax. To address this, we propose PrimeGuard, a novel ITG method that utilizes structured control flow. PrimeGuard routes requests to different self-instantiations of the LM with varying instructions, leveraging its inherent instruction-following capabilities and in-context learning. Our tuning-free approach dynamically compiles system-designer guidelines for each query. We construct and release safe-eval, a diverse red-team safety benchmark. Extensive evaluations demonstrate that PrimeGuard, without fine-tuning, overcomes the guardrail tax by (1) significantly increasing resistance to iterative jailbreak attacks and (2) achieving state-of-the-art results in safety guardrailing while (3) matching helpfulness scores of alignment-tuned models. Extensive evaluations demonstrate that PrimeGuard, without fine-tuning, outperforms all competing baselines and overcomes the guardrail tax by improving the fraction of safe responses from 61% to 97% and increasing average helpfulness scores from 4.17 to 4.29 on the largest models, while reducing attack success rate from 100% to 8%. PrimeGuard implementation is available at https://github.com/dynamofl/PrimeGuard and safe-eval dataset is available at https://huggingface.co/datasets/dynamoai/safe_eval.
Reliable and Efficient In-Memory Fault Tolerance of Large Language Model Pretraining
Extensive system scales (i.e. thousands of GPU/TPUs) and prolonged training periods (i.e. months of pretraining) significantly escalate the probability of failures when training large language models (LLMs). Thus, efficient and reliable fault-tolerance methods are in urgent need. Checkpointing is the primary fault-tolerance method to periodically save parameter snapshots from GPU memory to disks via CPU memory. In this paper, we identify the frequency of existing checkpoint-based fault-tolerance being significantly limited by the storage I/O overheads, which results in hefty re-training costs on restarting from the nearest checkpoint. In response to this gap, we introduce an in-memory fault-tolerance framework for large-scale LLM pretraining. The framework boosts the efficiency and reliability of fault tolerance from three aspects: (1) Reduced Data Transfer and I/O: By asynchronously caching parameters, i.e., sharded model parameters, optimizer states, and RNG states, to CPU volatile memory, Our framework significantly reduces communication costs and bypasses checkpoint I/O. (2) Enhanced System Reliability: Our framework enhances parameter protection with a two-layer hierarchy: snapshot management processes (SMPs) safeguard against software failures, together with Erasure Coding (EC) protecting against node failures. This double-layered protection greatly improves the survival probability of the parameters compared to existing checkpointing methods. (3) Improved Snapshotting Frequency: Our framework achieves more frequent snapshotting compared with asynchronous checkpointing optimizations under the same saving time budget, which improves the fault tolerance efficiency. Empirical results demonstrate that Our framework minimizes the overhead of fault tolerance of LLM pretraining by effectively leveraging redundant CPU resources.
FLAG: Finding Line Anomalies (in code) with Generative AI
Code contains security and functional bugs. The process of identifying and localizing them is difficult and relies on human labor. In this work, we present a novel approach (FLAG) to assist human debuggers. FLAG is based on the lexical capabilities of generative AI, specifically, Large Language Models (LLMs). Here, we input a code file then extract and regenerate each line within that file for self-comparison. By comparing the original code with an LLM-generated alternative, we can flag notable differences as anomalies for further inspection, with features such as distance from comments and LLM confidence also aiding this classification. This reduces the inspection search space for the designer. Unlike other automated approaches in this area, FLAG is language-agnostic, can work on incomplete (and even non-compiling) code and requires no creation of security properties, functional tests or definition of rules. In this work, we explore the features that help LLMs in this classification and evaluate the performance of FLAG on known bugs. We use 121 benchmarks across C, Python and Verilog; with each benchmark containing a known security or functional weakness. We conduct the experiments using two state of the art LLMs in OpenAI's code-davinci-002 and gpt-3.5-turbo, but our approach may be used by other models. FLAG can identify 101 of the defects and helps reduce the search space to 12-17% of source code.
Is Your Automated Software Engineer Trustworthy?
Large Language Models (LLMs) are being increasingly used in software engineering tasks, with an increased focus on bug report resolution over the past year. However, most proposed systems fail to properly handle uncertain or incorrect inputs and outputs. Existing LLM-based tools and coding agents respond to every issue and generate a patch for every case, even when the input is vague or their own output is incorrect. There are no mechanisms in place to abstain when confidence is low. This leads to unreliable behaviour, such as hallucinated code changes or responses based on vague issue reports. We introduce BouncerBench, a benchmark that evaluates whether LLM-based software agents can refuse to act when inputs are ill-defined or refuse to respond when their own outputs are likely to be incorrect. Unlike prior benchmarks that implicitly incentivize models to generate responses even when uncertain, BouncerBench aims to improve precision by targeting two overlooked failure points: (1) vague or underspecified issue descriptions in tickets and (2) logically or functionally incorrect code patches created by the system. It measures whether proposed systems can distinguish actionable issues from vague tickets and valid patches from untrustworthy ones. We also implement a basic input and output bouncer, evaluating how well current LLMs can abstain when needed. Our results show that most models fail to abstain from underspecified inputs or incorrect outputs. Hence, we conclude that there is significant room for improvement before LLMs can be trusted to make correct decisions and recommendations in real-world software engineering workflows. BouncerBench provides a first step toward evaluating and building more cautious, trustworthy code agents. The replication package, dataset, and leaderboard can be found at bouncerbench.com
Benchmarking Large Language Models for Multi-Language Software Vulnerability Detection
Recent advancements in generative AI have led to the widespread adoption of large language models (LLMs) in software engineering, addressing numerous long-standing challenges. However, a comprehensive study examining the capabilities of LLMs in software vulnerability detection (SVD), a crucial aspect of software security, is currently lacking. Existing research primarily focuses on evaluating LLMs using C/C++ datasets. It typically explores only one or two strategies among prompt engineering, instruction tuning, and sequence classification fine-tuning for open-source LLMs. Consequently, there is a significant knowledge gap regarding the effectiveness of diverse LLMs in detecting vulnerabilities across various programming languages. To address this knowledge gap, we present a comprehensive empirical study evaluating the performance of LLMs on the SVD task. We have compiled a comprehensive dataset comprising 8,260 vulnerable functions in Python, 7,505 in Java, and 28,983 in JavaScript. We assess five open-source LLMs using multiple approaches, including prompt engineering, instruction tuning, and sequence classification fine-tuning. These LLMs are benchmarked against five fine-tuned small language models and two open-source static application security testing tools. Furthermore, we explore two avenues to improve LLM performance on SVD: a) Data perspective: Retraining models using downsampled balanced datasets. b) Model perspective: Investigating ensemble learning methods that combine predictions from multiple LLMs. Our comprehensive experiments demonstrate that SVD remains a challenging task for LLMs. This study provides a thorough understanding of the role of LLMs in SVD and offers practical insights for future advancements in leveraging generative AI to enhance software security practices.
Large Language Models of Code Fail at Completing Code with Potential Bugs
Large language models of code (Code-LLMs) have recently brought tremendous advances to code completion, a fundamental feature of programming assistance and code intelligence. However, most existing works ignore the possible presence of bugs in the code context for generation, which are inevitable in software development. Therefore, we introduce and study the buggy-code completion problem, inspired by the realistic scenario of real-time code suggestion where the code context contains potential bugs -- anti-patterns that can become bugs in the completed program. To systematically study the task, we introduce two datasets: one with synthetic bugs derived from semantics-altering operator changes (buggy-HumanEval) and one with realistic bugs derived from user submissions to coding problems (buggy-FixEval). We find that the presence of potential bugs significantly degrades the generation performance of the high-performing Code-LLMs. For instance, the passing rates of CodeGen-2B-mono on test cases of buggy-HumanEval drop more than 50% given a single potential bug in the context. Finally, we investigate several post-hoc methods for mitigating the adverse effect of potential bugs and find that there remains a large gap in post-mitigation performance.
AI Control: Improving Safety Despite Intentional Subversion
As large language models (LLMs) become more powerful and are deployed more autonomously, it will be increasingly important to prevent them from causing harmful outcomes. Researchers have investigated a variety of safety techniques for this purpose, e.g. using models to review the outputs of other models, or red-teaming techniques to surface subtle failure modes. However, researchers have not evaluated whether such techniques still ensure safety if the model is itself intentionally trying to subvert them. In this paper, we develop and evaluate pipelines of safety techniques ("protocols") that are robust to intentional subversion. We investigate a scenario in which we want to solve a sequence of programming problems, using access to a powerful but untrusted model (in our case, GPT-4), access to a less powerful trusted model (in our case, GPT-3.5), and limited access to high-quality trusted labor. We investigate protocols that aim to never submit solutions containing backdoors, which we operationalize here as logical errors that are not caught by test cases. We investigate a range of protocols and test each against strategies that the untrusted model could use to subvert them. One protocol is what we call trusted editing. This protocol first asks GPT-4 to write code, and then asks GPT-3.5 to rate the suspiciousness of that code. If the code is below some suspiciousness threshold, it is submitted. Otherwise, GPT-3.5 edits the solution to remove parts that seem suspicious and then submits the edited code. Another protocol is untrusted monitoring. This protocol asks GPT-4 to write code, and then asks another instance of GPT-4 whether the code is backdoored, using various techniques to prevent the GPT-4 instances from colluding. These protocols improve substantially on simple baselines.
SPoC: Search-based Pseudocode to Code
We consider the task of mapping pseudocode to long programs that are functionally correct. Given test cases as a mechanism to validate programs, we search over the space of possible translations of the pseudocode to find a program that passes the validation. However, without proper credit assignment to localize the sources of program failures, it is difficult to guide search toward more promising programs. We propose to perform credit assignment based on signals from compilation errors, which constitute 88.7% of program failures. Concretely, we treat the translation of each pseudocode line as a discrete portion of the program, and whenever a synthesized program fails to compile, an error localization method tries to identify the portion of the program responsible for the failure. We then focus search over alternative translations of the pseudocode for those portions. For evaluation, we collected the SPoC dataset (Search-based Pseudocode to Code) containing 18,356 programs with human-authored pseudocode and test cases. Under a budget of 100 program compilations, performing search improves the synthesis success rate over using the top-one translation of the pseudocode from 25.6% to 44.7%.
Monitoring Decomposition Attacks in LLMs with Lightweight Sequential Monitors
Current LLM safety defenses fail under decomposition attacks, where a malicious goal is decomposed into benign subtasks that circumvent refusals. The challenge lies in the existing shallow safety alignment techniques: they only detect harm in the immediate prompt and do not reason about long-range intent, leaving them blind to malicious intent that emerges over a sequence of seemingly benign instructions. We therefore propose adding an external monitor that observes the conversation at a higher granularity. To facilitate our study of monitoring decomposition attacks, we curate the largest and most diverse dataset to date, including question-answering, text-to-image, and agentic tasks. We verify our datasets by testing them on frontier LLMs and show an 87% attack success rate on average on GPT-4o. This confirms that decomposition attack is broadly effective. Additionally, we find that random tasks can be injected into the decomposed subtasks to further obfuscate malicious intents. To defend in real time, we propose a lightweight sequential monitoring framework that cumulatively evaluates each subtask. We show that a carefully prompt engineered lightweight monitor achieves a 93% defense success rate, beating reasoning models like o3 mini as a monitor. Moreover, it remains robust against random task injection and cuts cost by 90% and latency by 50%. Our findings suggest that lightweight sequential monitors are highly effective in mitigating decomposition attacks and are viable in deployment.