- EaqVLA: Encoding-aligned Quantization for Vision-Language-Action Models With the development of Embodied Artificial intelligence, the end-to-end control policy such as Vision-Language-Action (VLA) model has become the mainstream. Existing VLA models faces expensive computing/storage cost, which need to be optimized. Quantization is considered as the most effective method which can not only reduce the memory cost but also achieve computation acceleration. However, we find the token alignment of VLA models hinders the application of existing quantization methods. To address this, we proposed an optimized framework called EaqVLA, which apply encoding-aligned quantization to VLA models. Specifically, we propose an complete analysis method to find the misalignment in various granularity. Based on the analysis results, we propose a mixed precision quantization with the awareness of encoding alignment. Experiments shows that the porposed EaqVLA achieves better quantization performance (with the minimal quantization loss for end-to-end action control and xxx times acceleration) than existing quantization methods. 6 authors · May 27
1 OliVe: Accelerating Large Language Models via Hardware-friendly Outlier-Victim Pair Quantization Transformer-based large language models (LLMs) have achieved great success with the growing model size. LLMs' size grows by 240times every two years, which outpaces the hardware progress and makes model inference increasingly costly. Model quantization is a promising approach to mitigate the widening gap between LLM size and hardware capacity. However, the existence of outliers, values with significant magnitudes, in LLMs makes existing quantization methods less effective. Prior outlier-aware quantization schemes adopt sparsity encoding techniques to separate outliers from normal values where the process requires global coordination (e.g., a global sparsity coordination list). This incurs complex encoding/decoding hardware logics and an extra orchestration controller for the computation between outlier and normal values. As such, it is not hardware-efficient and hence only achieves sub-optimal quantization benefits. We propose OliVe, an algorithm/architecture co-designed solution that adopts an outlier-victim pair (OVP) quantization and handles outlier values locally with low hardware overheads and high performance gains. The key insight of OliVe is that outliers are important while the normal values next to them are not. Thus those normal values (called victims) can be sacrificed to accommodate outliers. This enables a memory-aligned OVP encoding scheme, which can be efficiently integrated to the existing hardware accelerators like systolic array and tensor core. As a result, OliVe-based accelerator surpasses the existing outlier-aware accelerator, GOBO, by 4.5times speedup and 4.0times energy reduction, respectively, with a superior model accuracy. 9 authors · Apr 15, 2023