Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMEXA: Multilingual Evaluation of English-Centric LLMs via Cross-Lingual Alignment
English-centric large language models (LLMs) often show strong multilingual capabilities. However, the multilingual performance of these models remains unclear and is not thoroughly evaluated for many languages. Most benchmarks for multilinguality focus on classic NLP tasks, or cover a minimal number of languages. We introduce MEXA, a method for assessing the multilingual capabilities of pre-trained English-centric LLMs using parallel sentences, which are available for more languages than existing downstream tasks. MEXA leverages the fact that English-centric LLMs use English as a kind of pivot language in their intermediate layers. It computes the alignment between English and non-English languages using parallel sentences to evaluate the transfer of language understanding from English to other languages. This alignment can be used to estimate model performance in other languages. We conduct studies using various parallel datasets (FLORES-200 and Bible), models (Llama family, Gemma family, Mistral, and OLMo), and established downstream tasks (Belebele, m-MMLU, and m-ARC). We explore different methods to compute embeddings in decoder-only models. Our results show that MEXA, in its default settings, achieves a statistically significant average Pearson correlation of 0.90 with three established downstream tasks across nine models and two parallel datasets. This suggests that MEXA is a reliable method for estimating the multilingual capabilities of English-centric LLMs, providing a clearer understanding of their multilingual potential and the inner workings of LLMs. Leaderboard: https://huggingface.co/spaces/cis-lmu/Mexa, Code: https://github.com/cisnlp/Mexa.
HR-INR: Continuous Space-Time Video Super-Resolution via Event Camera
Continuous space-time video super-resolution (C-STVSR) aims to simultaneously enhance video resolution and frame rate at an arbitrary scale. Recently, implicit neural representation (INR) has been applied to video restoration, representing videos as implicit fields that can be decoded at an arbitrary scale. However, the highly ill-posed nature of C-STVSR limits the effectiveness of current INR-based methods: they assume linear motion between frames and use interpolation or feature warping to generate features at arbitrary spatiotemporal positions with two consecutive frames. This restrains C-STVSR from capturing rapid and nonlinear motion and long-term dependencies (involving more than two frames) in complex dynamic scenes. In this paper, we propose a novel C-STVSR framework, called HR-INR, which captures both holistic dependencies and regional motions based on INR. It is assisted by an event camera, a novel sensor renowned for its high temporal resolution and low latency. To fully utilize the rich temporal information from events, we design a feature extraction consisting of (1) a regional event feature extractor - taking events as inputs via the proposed event temporal pyramid representation to capture the regional nonlinear motion and (2) a holistic event-frame feature extractor for long-term dependence and continuity motion. We then propose a novel INR-based decoder with spatiotemporal embeddings to capture long-term dependencies with a larger temporal perception field. We validate the effectiveness and generalization of our method on four datasets (both simulated and real data), showing the superiority of our method.
SGPT: GPT Sentence Embeddings for Semantic Search
Decoder transformers have continued increasing in scale reaching hundreds of billions of parameters. Due to their scale the same decoder sets state-of-the-art results on various language tasks via prompting or fine-tuning. Yet, these large foundation models remain unusable for the related fields of semantic search and sentence embeddings. This prevents possibly new state-of-the-art results and forces organizations to train and maintain separate models. To this end, we propose SGPT to use decoders for sentence embeddings and semantic search via prompting or fine-tuning. At 5.8 billion parameters SGPT improves on the previously best sentence embeddings by a margin of 7% and outperforms a concurrent method with 175 billion parameters as measured on the BEIR search benchmark. Code, models and result files are freely available at https://github.com/Muennighoff/sgpt.
Decoder Pre-Training with only Text for Scene Text Recognition
Scene text recognition (STR) pre-training methods have achieved remarkable progress, primarily relying on synthetic datasets. However, the domain gap between synthetic and real images poses a challenge in acquiring feature representations that align well with images on real scenes, thereby limiting the performance of these methods. We note that vision-language models like CLIP, pre-trained on extensive real image-text pairs, effectively align images and text in a unified embedding space, suggesting the potential to derive the representations of real images from text alone. Building upon this premise, we introduce a novel method named Decoder Pre-training with only text for STR (DPTR). DPTR treats text embeddings produced by the CLIP text encoder as pseudo visual embeddings and uses them to pre-train the decoder. An Offline Randomized Perturbation (ORP) strategy is introduced. It enriches the diversity of text embeddings by incorporating natural image embeddings extracted from the CLIP image encoder, effectively directing the decoder to acquire the potential representations of real images. In addition, we introduce a Feature Merge Unit (FMU) that guides the extracted visual embeddings focusing on the character foreground within the text image, thereby enabling the pre-trained decoder to work more efficiently and accurately. Extensive experiments across various STR decoders and language recognition tasks underscore the broad applicability and remarkable performance of DPTR, providing a novel insight for STR pre-training. Code is available at https://github.com/Topdu/OpenOCR
MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers
We introduce MeshGPT, a new approach for generating triangle meshes that reflects the compactness typical of artist-created meshes, in contrast to dense triangle meshes extracted by iso-surfacing methods from neural fields. Inspired by recent advances in powerful large language models, we adopt a sequence-based approach to autoregressively generate triangle meshes as sequences of triangles. We first learn a vocabulary of latent quantized embeddings, using graph convolutions, which inform these embeddings of the local mesh geometry and topology. These embeddings are sequenced and decoded into triangles by a decoder, ensuring that they can effectively reconstruct the mesh. A transformer is then trained on this learned vocabulary to predict the index of the next embedding given previous embeddings. Once trained, our model can be autoregressively sampled to generate new triangle meshes, directly generating compact meshes with sharp edges, more closely imitating the efficient triangulation patterns of human-crafted meshes. MeshGPT demonstrates a notable improvement over state of the art mesh generation methods, with a 9% increase in shape coverage and a 30-point enhancement in FID scores across various categories.
Improving Text Embeddings with Large Language Models
In this paper, we introduce a novel and simple method for obtaining high-quality text embeddings using only synthetic data and less than 1k training steps. Unlike existing methods that often depend on multi-stage intermediate pre-training with billions of weakly-supervised text pairs, followed by fine-tuning with a few labeled datasets, our method does not require building complex training pipelines or relying on manually collected datasets that are often constrained by task diversity and language coverage. We leverage proprietary LLMs to generate diverse synthetic data for hundreds of thousands of text embedding tasks across nearly 100 languages. We then fine-tune open-source decoder-only LLMs on the synthetic data using standard contrastive loss. Experiments demonstrate that our method achieves strong performance on highly competitive text embedding benchmarks without using any labeled data. Furthermore, when fine-tuned with a mixture of synthetic and labeled data, our model sets new state-of-the-art results on the BEIR and MTEB benchmarks.
Interchangeable Token Embeddings for Extendable Vocabulary and Alpha-Equivalence
We propose a novel approach for learning interchangeable tokens in language models to obtain an extendable vocabulary that can generalize to new tokens. Our method is designed to address alpha-equivalence, the principle that renaming bound variables in a syntactic expression preserves semantics. This property arises in many formal languages such as temporal logics, in which all proposition symbols represent the same concept but are distinguishable from each other. To handle such tokens, we develop a dual-part embedding approach. The first part is shared across all interchangeable tokens, thereby enforcing that they represent the same core concept. The second part is randomly generated for each token, which enables distinguishability. We evaluate our method in a Transformer encoder-decoder model on two tasks: solving linear temporal logic formulae and copying with extendable vocabulary. Our method demonstrates promising generalization capabilities in addition to introducing a favorable inductive bias for alpha-equivalence.
DeTiME: Diffusion-Enhanced Topic Modeling using Encoder-decoder based LLM
In the burgeoning field of natural language processing, Neural Topic Models (NTMs) and Large Language Models (LLMs) have emerged as areas of significant research interest. Despite this, NTMs primarily utilize contextual embeddings from LLMs, which are not optimal for clustering or capable for topic generation. Our study addresses this gap by introducing a novel framework named Diffusion-Enhanced Topic Modeling using Encoder-Decoder-based LLMs (DeTiME). DeTiME leverages ncoder-Decoder-based LLMs to produce highly clusterable embeddings that could generate topics that exhibit both superior clusterability and enhanced semantic coherence compared to existing methods. Additionally, by exploiting the power of diffusion, our framework also provides the capability to generate content relevant to the identified topics. This dual functionality allows users to efficiently produce highly clustered topics and related content simultaneously. DeTiME's potential extends to generating clustered embeddings as well. Notably, our proposed framework proves to be efficient to train and exhibits high adaptability, demonstrating its potential for a wide array of applications.
A Comprehensive Study of Decoder-Only LLMs for Text-to-Image Generation
Both text-to-image generation and large language models (LLMs) have made significant advancements. However, many text-to-image models still employ the somewhat outdated T5 and CLIP as their text encoders. In this work, we investigate the effectiveness of using modern decoder-only LLMs as text encoders for text-to-image diffusion models. We build a standardized training and evaluation pipeline that allows us to isolate and evaluate the effect of different text embeddings. We train a total of 27 text-to-image models with 12 different text encoders to analyze the critical aspects of LLMs that could impact text-to-image generation, including the approaches to extract embeddings, different LLMs variants, and model sizes. Our experiments reveal that the de facto way of using last-layer embeddings as conditioning leads to inferior performance. Instead, we explore embeddings from various layers and find that using layer-normalized averaging across all layers significantly improves alignment with complex prompts. Most LLMs with this conditioning outperform the baseline T5 model, showing enhanced performance in advanced visio-linguistic reasoning skills.
Translation Aligned Sentence Embeddings for Turkish Language
Due to the limited availability of high quality datasets for training sentence embeddings in Turkish, we propose a training methodology and a regimen to develop a sentence embedding model. The central idea is simple but effective : is to fine-tune a pretrained encoder-decoder model in two consecutive stages, where the first stage involves aligning the embedding space with translation pairs. Thanks to this alignment, the prowess of the main model can be better projected onto the target language in a sentence embedding setting where it can be fine-tuned with high accuracy in short duration with limited target language dataset.
Neural Machine Translation without Embeddings
Many NLP models operate over sequences of subword tokens produced by hand-crafted tokenization rules and heuristic subword induction algorithms. A simple universal alternative is to represent every computerized text as a sequence of bytes via UTF-8, obviating the need for an embedding layer since there are fewer token types (256) than dimensions. Surprisingly, replacing the ubiquitous embedding layer with one-hot representations of each byte does not hurt performance; experiments on byte-to-byte machine translation from English to 10 different languages show a consistent improvement in BLEU, rivaling character-level and even standard subword-level models. A deeper investigation reveals that the combination of embeddingless models with decoder-input dropout amounts to token dropout, which benefits byte-to-byte models in particular.
SONAR-LLM: Autoregressive Transformer that Thinks in Sentence Embeddings and Speaks in Tokens
The recently proposed Large Concept Model (LCM) generates text by predicting a sequence of sentence-level embeddings and training with either mean-squared error or diffusion objectives. We present SONAR-LLM, a decoder-only transformer that "thinks" in the same continuous SONAR embedding space, yet is supervised through token-level cross-entropy propagated via the frozen SONAR decoder. This hybrid objective retains the semantic abstraction of LCM while eliminating its diffusion sampler and restoring a likelihood-based training signal. Across model sizes from 39M to 1.3B parameters, SONAR-LLM attains competitive generation quality. We report scaling trends, ablations, benchmark results, and release the complete training code and all pretrained checkpoints to foster reproducibility and future research.
Efficient Knowledge Feeding to Language Models: A Novel Integrated Encoder-Decoder Architecture
This paper introduces a novel approach to efficiently feeding knowledge to language models (LLMs) during prediction by integrating retrieval and generation processes within a unified framework. While the Retrieval-Augmented Generation (RAG) model addresses gaps in LLMs' training data and knowledge limits, it is hindered by token limit restrictions and dependency on the retrieval system's accuracy. Our proposed architecture incorporates in-context vectors (ICV) to overcome these challenges. ICV recasts in-context learning by using latent embeddings of LLMs to create a vector that captures essential task information. This vector is then used to shift the latent states of the LLM, enhancing the generation process without adding demonstration examples to the prompt. ICV directly integrates information into the model, enabling it to process this information more effectively. Our extensive experimental evaluation demonstrates that ICV outperforms standard in-context learning and fine-tuning across question-answering, information retrieval, and other tasks. This approach mitigates the limitations of current RAG models and offers a more robust solution for handling extensive and diverse datasets. Despite leveraging a fraction of the parameters, our ICV-enhanced model achieves competitive performance against models like LLaMA-3, Gemma, and Phi-3, significantly reducing computational costs and memory requirements. ICV reduces prompt length, is easy to control, surpasses token limitations, and is computationally efficient compared to fine-tuning.
Token Prepending: A Training-Free Approach for Eliciting Better Sentence Embeddings from LLMs
Extracting sentence embeddings from large language models (LLMs) is a promising direction, as LLMs have demonstrated stronger semantic understanding capabilities. Previous studies typically focus on prompt engineering to elicit sentence embeddings from LLMs by prompting the model to encode sentence information into the embedding of the last token. However, LLMs are mostly decoder-only models with causal attention and the earlier tokens in the sentence cannot attend to the latter tokens, resulting in biased encoding of sentence information and cascading effects on the final decoded token. To this end, we propose a novel Token Prepending (TP) technique that prepends each layer's decoded sentence embedding to the beginning of the sentence in the next layer's input, allowing earlier tokens to attend to the complete sentence information under the causal attention mechanism. The proposed TP technique is a plug-and-play and training-free technique, which means it can be seamlessly integrated with various prompt-based sentence embedding methods and autoregressive LLMs. Extensive experiments on various Semantic Textual Similarity (STS) tasks and downstream classification tasks demonstrate that our proposed TP technique can significantly improve the performance of existing prompt-based sentence embedding methods across different LLMs, while incurring negligible additional inference cost.
Causal2Vec: Improving Decoder-only LLMs as Versatile Embedding Models
Decoder-only large language models (LLMs) are increasingly used to build embedding models that effectively encode the semantic information of natural language texts into dense vector representations for various embedding tasks. However, many existing methods primarily focus on removing the causal attention mask in LLMs to enable bidirectional attention, potentially undermining the model's ability to extract semantic information acquired during pretraining. Additionally, leading unidirectional approaches often rely on extra input text to overcome the inherent limitations of causal attention, inevitably increasing computational costs. In this work, we propose Causal2Vec, a general-purpose embedding model tailored to enhance the performance of decoder-only LLMs without altering their original architectures or introducing significant computational overhead. Specifically, we first employ a lightweight BERT-style model to pre-encode the input text into a single Contextual token, which is then prepended to the LLM's input sequence, allowing each token to capture contextualized information even without attending to future tokens. Furthermore, to mitigate the recency bias introduced by last-token pooling and help LLMs better leverage the semantic information encoded in the Contextual token, we concatenate the last hidden states of Contextual and EOS tokens as the final text embedding. In practice, Causal2Vec achieves state-of-the-art performance on the Massive Text Embeddings Benchmark (MTEB) among models trained solely on publicly available retrieval datasets, while reducing the required sequence length by up to 85% and inference time by up to 82% compared to best-performing methods.
Generative Distribution Embeddings
Many real-world problems require reasoning across multiple scales, demanding models which operate not on single data points, but on entire distributions. We introduce generative distribution embeddings (GDE), a framework that lifts autoencoders to the space of distributions. In GDEs, an encoder acts on sets of samples, and the decoder is replaced by a generator which aims to match the input distribution. This framework enables learning representations of distributions by coupling conditional generative models with encoder networks which satisfy a criterion we call distributional invariance. We show that GDEs learn predictive sufficient statistics embedded in the Wasserstein space, such that latent GDE distances approximately recover the W_2 distance, and latent interpolation approximately recovers optimal transport trajectories for Gaussian and Gaussian mixture distributions. We systematically benchmark GDEs against existing approaches on synthetic datasets, demonstrating consistently stronger performance. We then apply GDEs to six key problems in computational biology: learning representations of cell populations from lineage-tracing data (150K cells), predicting perturbation effects on single-cell transcriptomes (1M cells), predicting perturbation effects on cellular phenotypes (20M single-cell images), modeling tissue-specific DNA methylation patterns (253M sequences), designing synthetic yeast promoters (34M sequences), and spatiotemporal modeling of viral protein sequences (1M sequences).
VALL-T: Decoder-Only Generative Transducer for Robust and Decoding-Controllable Text-to-Speech
Recent TTS models with decoder-only Transformer architecture, such as SPEAR-TTS and VALL-E, achieve impressive naturalness and demonstrate the ability for zero-shot adaptation given a speech prompt. However, such decoder-only TTS models lack monotonic alignment constraints, sometimes leading to hallucination issues such as mispronunciation, word skipping and repeating. To address this limitation, we propose VALL-T, a generative Transducer model that introduces shifting relative position embeddings for input phoneme sequence, explicitly indicating the monotonic generation process while maintaining the architecture of decoder-only Transformer. Consequently, VALL-T retains the capability of prompt-based zero-shot adaptation and demonstrates better robustness against hallucinations with a relative reduction of 28.3% in the word error rate. Furthermore, the controllability of alignment in VALL-T during decoding facilitates the use of untranscribed speech prompts, even in unknown languages. It also enables the synthesis of lengthy speech by utilizing an aligned context window.
Attention is All You Need? Good Embeddings with Statistics are enough:Large Scale Audio Understanding without Transformers/ Convolutions/ BERTs/ Mixers/ Attention/ RNNs or ....
This paper presents a way of doing large scale audio understanding without traditional state of the art neural architectures. Ever since the introduction of deep learning for understanding audio signals in the past decade, convolutional architectures have been able to achieve state of the art results surpassing traditional hand-crafted features. In the recent past, there has been a similar shift away from traditional convolutional and recurrent neural networks towards purely end-to-end Transformer architectures. We, in this work, explore an approach, based on Bag-of-Words model. Our approach does not have any convolutions, recurrence, attention, transformers or other approaches such as BERT. We utilize micro and macro level clustered vanilla embeddings, and use a MLP head for classification. We only use feed-forward encoder-decoder models to get the bottlenecks of spectral envelops, spectral patches and slices as well as multi-resolution spectra. A classification head (a feed-forward layer), similar to the approach in SimCLR is trained on a learned representation. Using simple codes learned on latent representations, we show how we surpass traditional convolutional neural network architectures, and come strikingly close to outperforming powerful Transformer architectures. This work hopefully would pave way for exciting advancements in the field of representation learning without massive, end-to-end neural architectures.
Less is More: Pre-train a Strong Text Encoder for Dense Retrieval Using a Weak Decoder
Dense retrieval requires high-quality text sequence embeddings to support effective search in the representation space. Autoencoder-based language models are appealing in dense retrieval as they train the encoder to output high-quality embedding that can reconstruct the input texts. However, in this paper, we provide theoretical analyses and show empirically that an autoencoder language model with a low reconstruction loss may not provide good sequence representations because the decoder may take shortcuts by exploiting language patterns. To address this, we propose a new self-learning method that pre-trains the autoencoder using a weak decoder, with restricted capacity and attention flexibility to push the encoder to provide better text representations. Our experiments on web search, news recommendation, and open domain question answering show that our pre-trained model significantly boosts the effectiveness and few-shot ability of dense retrieval models. Our code is available at https://github.com/microsoft/SEED-Encoder/.
Interfacing Foundation Models' Embeddings
We present FIND, a generalized interface for aligning foundation models' embeddings. As shown in teaser figure, a lightweight transformer interface without tuning any foundation model weights is enough for a unified image (segmentation) and dataset-level (retrieval) understanding. The proposed interface has the following favorable attributes: (1) Generalizable. It applies to various tasks spanning retrieval, segmentation, etc., under the same architecture and weights. (2) Prototypable. Different tasks are able to be implemented through prototyping attention masks and embedding types. (3) Extendable. The proposed interface is adaptive to new tasks, and new models. (4) Interleavable. With the benefit of multi-task multi-modal training, the proposed interface creates an interleaved shared embedding space. In light of the interleaved embedding space, we introduce the FIND-Bench, which introduces new training and evaluation annotations to the COCO dataset for interleave segmentation and retrieval. Our approach achieves state-of-the-art performance on FIND-Bench and competitive performance on standard retrieval and segmentation settings. The training, evaluation, and demo code as well as the dataset have been released at https://github.com/UX-Decoder/FIND.
Massively Multilingual Sentence Embeddings for Zero-Shot Cross-Lingual Transfer and Beyond
We introduce an architecture to learn joint multilingual sentence representations for 93 languages, belonging to more than 30 different families and written in 28 different scripts. Our system uses a single BiLSTM encoder with a shared BPE vocabulary for all languages, which is coupled with an auxiliary decoder and trained on publicly available parallel corpora. This enables us to learn a classifier on top of the resulting embeddings using English annotated data only, and transfer it to any of the 93 languages without any modification. Our experiments in cross-lingual natural language inference (XNLI dataset), cross-lingual document classification (MLDoc dataset) and parallel corpus mining (BUCC dataset) show the effectiveness of our approach. We also introduce a new test set of aligned sentences in 112 languages, and show that our sentence embeddings obtain strong results in multilingual similarity search even for low-resource languages. Our implementation, the pre-trained encoder and the multilingual test set are available at https://github.com/facebookresearch/LASER
Implicit Inversion turns CLIP into a Decoder
CLIP is a discriminative model trained to align images and text in a shared embedding space. Due to its multimodal structure, it serves as the backbone of many generative pipelines, where a decoder is trained to map from the shared space back to images. In this work, we show that image synthesis is nevertheless possible using CLIP alone -- without any decoder, training, or fine-tuning. Our approach optimizes a frequency-aware implicit neural representation that encourages coarse-to-fine generation by stratifying frequencies across network layers. To stabilize this inverse mapping, we introduce adversarially robust initialization, a lightweight Orthogonal Procrustes projection to align local text and image embeddings, and a blending loss that anchors outputs to natural image statistics. Without altering CLIP's weights, this framework unlocks capabilities such as text-to-image generation, style transfer, and image reconstruction. These findings suggest that discriminative models may hold untapped generative potential, hidden in plain sight.
CJST: CTC Compressor based Joint Speech and Text Training for Decoder-Only ASR
CTC compressor can be an effective approach to integrate audio encoders to decoder-only models, which has gained growing interest for different speech applications. In this work, we propose a novel CTC compressor based joint speech and text training (CJST) framework for decoder-only ASR. CJST matches speech and text modalities from both directions by exploring a simple modality adaptor and several features of the CTC compressor, including sequence compression, on-the-fly forced peaky alignment and CTC class embeddings. Experimental results on the Librispeech and TED-LIUM2 corpora show that the proposed CJST achieves an effective text injection without the need of duration handling, leading to the best performance for both in-domain and cross-domain scenarios. We also provide a comprehensive study on CTC compressor, covering various compression modes, edge case handling and behavior under both clean and noisy data conditions, which reveals the most robust setting to use CTC compressor for decoder-only models.
Text-driven Adaptation of Foundation Models for Few-shot Surgical Workflow Analysis
Purpose: Surgical workflow analysis is crucial for improving surgical efficiency and safety. However, previous studies rely heavily on large-scale annotated datasets, posing challenges in cost, scalability, and reliance on expert annotations. To address this, we propose Surg-FTDA (Few-shot Text-driven Adaptation), designed to handle various surgical workflow analysis tasks with minimal paired image-label data. Methods: Our approach has two key components. First, Few-shot selection-based modality alignment selects a small subset of images and aligns their embeddings with text embeddings from the downstream task, bridging the modality gap. Second, Text-driven adaptation leverages only text data to train a decoder, eliminating the need for paired image-text data. This decoder is then applied to aligned image embeddings, enabling image-related tasks without explicit image-text pairs. Results: We evaluate our approach to generative tasks (image captioning) and discriminative tasks (triplet recognition and phase recognition). Results show that Surg-FTDA outperforms baselines and generalizes well across downstream tasks. Conclusion: We propose a text-driven adaptation approach that mitigates the modality gap and handles multiple downstream tasks in surgical workflow analysis, with minimal reliance on large annotated datasets. The code and dataset will be released in https://github.com/CAMMA-public/Surg-FTDA
PixelLM: Pixel Reasoning with Large Multimodal Model
While large multimodal models (LMMs) have achieved remarkable progress, generating pixel-level masks for image reasoning tasks involving multiple open-world targets remains a challenge. To bridge this gap, we introduce PixelLM, an effective and efficient LMM for pixel-level reasoning and understanding. Central to PixelLM is a novel, lightweight pixel decoder and a comprehensive segmentation codebook. The decoder efficiently produces masks from the hidden embeddings of the codebook tokens, which encode detailed target-relevant information. With this design, PixelLM harmonizes with the structure of popular LMMs and avoids the need for additional costly segmentation models. Furthermore, we propose a target refinement loss to enhance the model's ability to differentiate between multiple targets, leading to substantially improved mask quality. To advance research in this area, we construct MUSE, a high-quality multi-target reasoning segmentation benchmark. PixelLM excels across various pixel-level image reasoning and understanding tasks, outperforming well-established methods in multiple benchmarks, including MUSE, single- and multi-referring segmentation. Comprehensive ablations confirm the efficacy of each proposed component. All code, models, and datasets will be publicly available.
Event2Mind: Commonsense Inference on Events, Intents, and Reactions
We investigate a new commonsense inference task: given an event described in a short free-form text ("X drinks coffee in the morning"), a system reasons about the likely intents ("X wants to stay awake") and reactions ("X feels alert") of the event's participants. To support this study, we construct a new crowdsourced corpus of 25,000 event phrases covering a diverse range of everyday events and situations. We report baseline performance on this task, demonstrating that neural encoder-decoder models can successfully compose embedding representations of previously unseen events and reason about the likely intents and reactions of the event participants. In addition, we demonstrate how commonsense inference on people's intents and reactions can help unveil the implicit gender inequality prevalent in modern movie scripts.
EmbedLLM: Learning Compact Representations of Large Language Models
With hundreds of thousands of language models available on Huggingface today, efficiently evaluating and utilizing these models across various downstream, tasks has become increasingly critical. Many existing methods repeatedly learn task-specific representations of Large Language Models (LLMs), which leads to inefficiencies in both time and computational resources. To address this, we propose EmbedLLM, a framework designed to learn compact vector representations, of LLMs that facilitate downstream applications involving many models, such as model routing. We introduce an encoder-decoder approach for learning such embeddings, along with a systematic framework to evaluate their effectiveness. Empirical results show that EmbedLLM outperforms prior methods in model routing both in accuracy and latency. Additionally, we demonstrate that our method can forecast a model's performance on multiple benchmarks, without incurring additional inference cost. Extensive probing experiments validate that the learned embeddings capture key model characteristics, e.g. whether the model is specialized for coding tasks, even without being explicitly trained on them. We open source our dataset, code and embedder to facilitate further research and application.
LG-ANNA-Embedding technical report
This report presents a unified instruction-based framework for learning generalized text embeddings optimized for both information retrieval (IR) and non-IR tasks. Built upon a decoder-only large language model (Mistral-7B), our approach combines in-context learning, soft supervision, and adaptive hard-negative mining to generate context-aware embeddings without task-specific fine-tuning. Structured instructions and few-shot examples are used to guide the model across diverse tasks, enabling strong performance on classification, semantic similarity, clustering, and reranking benchmarks. To improve semantic discrimination, we employ a soft labeling framework where continuous relevance scores, distilled from a high-performance dense retriever and reranker, serve as fine-grained supervision signals. In addition, we introduce adaptive margin-based hard-negative mining, which filters out semantically ambiguous negatives based on their similarity to positive examples, thereby enhancing training stability and retrieval robustness. Our model is evaluated on the newly introduced MTEB (English, v2) benchmark, covering 41 tasks across seven categories. Results show that our method achieves strong generalization and ranks among the top-performing models by Borda score, outperforming several larger or fully fine-tuned baselines. These findings highlight the effectiveness of combining in-context prompting, soft supervision, and adaptive sampling for scalable, high-quality embedding generation.
CoNeTTE: An efficient Audio Captioning system leveraging multiple datasets with Task Embedding
Automated Audio Captioning (AAC) involves generating natural language descriptions of audio content, using encoder-decoder architectures. An audio encoder produces audio embeddings fed to a decoder, usually a Transformer decoder, for caption generation. In this work, we describe our model, which novelty, compared to existing models, lies in the use of a ConvNeXt architecture as audio encoder, adapted from the vision domain to audio classification. This model, called CNext-trans, achieved state-of-the-art scores on the AudioCaps (AC) dataset and performed competitively on Clotho (CL), while using four to forty times fewer parameters than existing models. We examine potential biases in the AC dataset due to its origin from AudioSet by investigating unbiased encoder's impact on performance. Using the well-known PANN's CNN14, for instance, as an unbiased encoder, we observed a 1.7% absolute reduction in SPIDEr score (where higher scores indicate better performance). To improve cross-dataset performance, we conducted experiments by combining multiple AAC datasets (AC, CL, MACS, WavCaps) for training. Although this strategy enhanced overall model performance across datasets, it still fell short compared to models trained specifically on a single target dataset, indicating the absence of a one-size-fits-all model. To mitigate performance gaps between datasets, we introduced a Task Embedding (TE) token, allowing the model to identify the source dataset for each input sample. We provide insights into the impact of these TEs on both the form (words) and content (sound event types) of the generated captions. The resulting model, named CoNeTTE, an unbiased CNext-trans model enriched with dataset-specific Task Embeddings, achieved SPIDEr scores of 44.1% and 30.5% on AC and CL, respectively. Code available: https://github.com/Labbeti/conette-audio-captioning.
EmoTalk: Speech-Driven Emotional Disentanglement for 3D Face Animation
Speech-driven 3D face animation aims to generate realistic facial expressions that match the speech content and emotion. However, existing methods often neglect emotional facial expressions or fail to disentangle them from speech content. To address this issue, this paper proposes an end-to-end neural network to disentangle different emotions in speech so as to generate rich 3D facial expressions. Specifically, we introduce the emotion disentangling encoder (EDE) to disentangle the emotion and content in the speech by cross-reconstructed speech signals with different emotion labels. Then an emotion-guided feature fusion decoder is employed to generate a 3D talking face with enhanced emotion. The decoder is driven by the disentangled identity, emotional, and content embeddings so as to generate controllable personal and emotional styles. Finally, considering the scarcity of the 3D emotional talking face data, we resort to the supervision of facial blendshapes, which enables the reconstruction of plausible 3D faces from 2D emotional data, and contribute a large-scale 3D emotional talking face dataset (3D-ETF) to train the network. Our experiments and user studies demonstrate that our approach outperforms state-of-the-art methods and exhibits more diverse facial movements. We recommend watching the supplementary video: https://ziqiaopeng.github.io/emotalk
Text-Only Training for Image Captioning using Noise-Injected CLIP
We consider the task of image-captioning using only the CLIP model and additional text data at training time, and no additional captioned images. Our approach relies on the fact that CLIP is trained to make visual and textual embeddings similar. Therefore, we only need to learn how to translate CLIP textual embeddings back into text, and we can learn how to do this by learning a decoder for the frozen CLIP text encoder using only text. We argue that this intuition is "almost correct" because of a gap between the embedding spaces, and propose to rectify this via noise injection during training. We demonstrate the effectiveness of our approach by showing SOTA zero-shot image captioning across four benchmarks, including style transfer. Code, data, and models are available on GitHub.
Latent Embedding Feedback and Discriminative Features for Zero-Shot Classification
Zero-shot learning strives to classify unseen categories for which no data is available during training. In the generalized variant, the test samples can further belong to seen or unseen categories. The state-of-the-art relies on Generative Adversarial Networks that synthesize unseen class features by leveraging class-specific semantic embeddings. During training, they generate semantically consistent features, but discard this constraint during feature synthesis and classification. We propose to enforce semantic consistency at all stages of (generalized) zero-shot learning: training, feature synthesis and classification. We first introduce a feedback loop, from a semantic embedding decoder, that iteratively refines the generated features during both the training and feature synthesis stages. The synthesized features together with their corresponding latent embeddings from the decoder are then transformed into discriminative features and utilized during classification to reduce ambiguities among categories. Experiments on (generalized) zero-shot object and action classification reveal the benefit of semantic consistency and iterative feedback, outperforming existing methods on six zero-shot learning benchmarks. Source code at https://github.com/akshitac8/tfvaegan.
AudioSlots: A slot-centric generative model for audio separation
In a range of recent works, object-centric architectures have been shown to be suitable for unsupervised scene decomposition in the vision domain. Inspired by these methods we present AudioSlots, a slot-centric generative model for blind source separation in the audio domain. AudioSlots is built using permutation-equivariant encoder and decoder networks. The encoder network based on the Transformer architecture learns to map a mixed audio spectrogram to an unordered set of independent source embeddings. The spatial broadcast decoder network learns to generate the source spectrograms from the source embeddings. We train the model in an end-to-end manner using a permutation invariant loss function. Our results on Libri2Mix speech separation constitute a proof of concept that this approach shows promise. We discuss the results and limitations of our approach in detail, and further outline potential ways to overcome the limitations and directions for future work.
Return of the Encoder: Maximizing Parameter Efficiency for SLMs
The dominance of large decoder-only language models has overshadowed encoder-decoder architectures, despite their fundamental efficiency advantages in sequence processing. For small language models (SLMs) - those with 1 billion parameters or fewer - our systematic analysis across GPU, CPU, and NPU platforms reveals that encoder-decoder architectures achieve 47% lower first-token latency and 4.7x higher throughput compared to decoder-only models on edge devices. These gains may be attributed to encoder-decoder's one-time input processing and efficient separation of understanding and generation phases. We introduce a novel knowledge distillation framework that enables encoder-decoder models to leverage capabilities from large scalable decoder-only teachers while preserving their architectural advantages, achieving up to 6 average performance points improvement across diverse tasks, with significant gains in asymmetric sequence tasks where input and output distributions can benefit from different processing approaches. When combined with modern advances like Rotary Positional Embeddings (RoPE) and Vision encoders, our systematic investigation demonstrates that encoder-decoder architectures provide a more practical path toward deploying capable language models in resource-constrained environments. Our findings challenge the prevailing trend toward decoder-only scaling, showing that architectural choices become increasingly crucial as parameter budgets decrease, particularly for on-device and edge deployments where computational efficiency is paramount.
Object Recognition as Next Token Prediction
We present an approach to pose object recognition as next token prediction. The idea is to apply a language decoder that auto-regressively predicts the text tokens from image embeddings to form labels. To ground this prediction process in auto-regression, we customize a non-causal attention mask for the decoder, incorporating two key features: modeling tokens from different labels to be independent, and treating image tokens as a prefix. This masking mechanism inspires an efficient method - one-shot sampling - to simultaneously sample tokens of multiple labels in parallel and rank generated labels by their probabilities during inference. To further enhance the efficiency, we propose a simple strategy to construct a compact decoder by simply discarding the intermediate blocks of a pretrained language model. This approach yields a decoder that matches the full model's performance while being notably more efficient. The code is available at https://github.com/kaiyuyue/nxtp
Prot2Token: A Unified Framework for Protein Modeling via Next-Token Prediction
The diverse nature of protein prediction tasks has traditionally necessitated specialized models, hindering the development of broadly applicable and computationally efficient Protein Language Models (PLMs). In this work, we introduce Prot2Token, a unified framework that overcomes these challenges by converting a wide spectrum of protein-related predictions, from sequence-level properties and residue-specific attributes to complex inter-protein interactions, into a standardized next-token prediction format. At its core, Prot2Token employs an autoregressive decoder, conditioned on embeddings from pre-trained protein encoders and guided by learnable task tokens, to perform diverse predictions. This architecture uniquely facilitates multi-task learning, enabling a single model to master numerous tasks with improved efficiency. We present extensive experimental validation across a variety of benchmarks, demonstrating Prot2Tokens strong predictive power in different types of protein-prediction tasks. Key results include significant speedups (e.g., near 1000x over AlphaFold2 with MSA) and performance often matching or exceeding specialized approaches. Beyond that, we introduce an auxiliary self-supervised decoder pre-training approach to improve spatially sensitive task performance. Prot2Token thus offers a significant step towards a versatile, high-throughput paradigm for protein modeling, promising to accelerate biological discovery and the development of novel therapeutics. The code is available at https://github.com/mahdip72/prot2token .
Sentence-T5: Scalable Sentence Encoders from Pre-trained Text-to-Text Models
We provide the first exploration of sentence embeddings from text-to-text transformers (T5). Sentence embeddings are broadly useful for language processing tasks. While T5 achieves impressive performance on language tasks cast as sequence-to-sequence mapping problems, it is unclear how to produce sentence embeddings from encoder-decoder models. We investigate three methods for extracting T5 sentence embeddings: two utilize only the T5 encoder and one uses the full T5 encoder-decoder model. To support our investigation, we establish a new sentence representation transfer benchmark, SentGLUE, which extends the SentEval toolkit to nine tasks from the GLUE benchmark. Our encoder-only models outperforms Sentence-BERT and SimCSE sentence embeddings on both SentEval and SentGLUE transfer tasks, including semantic textual similarity (STS). Scaling up T5 from millions to billions of parameters is found to produce consistent further improvements. Finally, our encoder-decoder method achieves a new state-of-the-art on STS when using sentence embeddings. Our models are released at https://tfhub.dev/google/collections/sentence-t5/1.
cMIM: A Contrastive Mutual Information Framework for Unified Generative and Discriminative Representation Learning
Learning representations that are useful for unknown downstream tasks is a fundamental challenge in representation learning. Prominent approaches in this domain include contrastive learning, self-supervised masking, and denoising auto-encoders. In this paper, we introduce a novel method, termed contrastive Mutual Information Machine (cMIM), which aims to enhance the utility of learned representations for downstream tasks. cMIM integrates a new contrastive learning loss with the Mutual Information Machine (MIM) learning framework, a probabilistic auto-encoder that maximizes the mutual information between inputs and latent representations while clustering the latent codes. Despite MIM's potential, initial experiments indicated that the representations learned by MIM were less effective for discriminative downstream tasks compared to state-of-the-art (SOTA) models. The proposed cMIM method directly addresses this limitation. The main contributions of this work are twofold: (1) We propose a novel contrastive extension to MIM for learning discriminative representations which eliminates the need for data augmentation and is robust to variations in the number of negative examples (i.e., batch size). (2) We introduce a generic method for extracting informative embeddings from encoder-decoder models, which significantly improves performance in discriminative downstream tasks without requiring additional training. This method is applicable to any pre-trained encoder-decoder model. By presenting cMIM, we aim to offer a unified generative model that is effective for both generative and discriminative tasks. Our results demonstrate that the learned representations are valuable for downstream tasks while maintaining the generative capabilities of MIM.
Hyperspherical Embedding for Point Cloud Completion
Most real-world 3D measurements from depth sensors are incomplete, and to address this issue the point cloud completion task aims to predict the complete shapes of objects from partial observations. Previous works often adapt an encoder-decoder architecture, where the encoder is trained to extract embeddings that are used as inputs to generate predictions from the decoder. However, the learned embeddings have sparse distribution in the feature space, which leads to worse generalization results during testing. To address these problems, this paper proposes a hyperspherical module, which transforms and normalizes embeddings from the encoder to be on a unit hypersphere. With the proposed module, the magnitude and direction of the output hyperspherical embedding are decoupled and only the directional information is optimized. We theoretically analyze the hyperspherical embedding and show that it enables more stable training with a wider range of learning rates and more compact embedding distributions. Experiment results show consistent improvement of point cloud completion in both single-task and multi-task learning, which demonstrates the effectiveness of the proposed method.
Paraformer: Fast and Accurate Parallel Transformer for Non-autoregressive End-to-End Speech Recognition
Transformers have recently dominated the ASR field. Although able to yield good performance, they involve an autoregressive (AR) decoder to generate tokens one by one, which is computationally inefficient. To speed up inference, non-autoregressive (NAR) methods, e.g. single-step NAR, were designed, to enable parallel generation. However, due to an independence assumption within the output tokens, performance of single-step NAR is inferior to that of AR models, especially with a large-scale corpus. There are two challenges to improving single-step NAR: Firstly to accurately predict the number of output tokens and extract hidden variables; secondly, to enhance modeling of interdependence between output tokens. To tackle both challenges, we propose a fast and accurate parallel transformer, termed Paraformer. This utilizes a continuous integrate-and-fire based predictor to predict the number of tokens and generate hidden variables. A glancing language model (GLM) sampler then generates semantic embeddings to enhance the NAR decoder's ability to model context interdependence. Finally, we design a strategy to generate negative samples for minimum word error rate training to further improve performance. Experiments using the public AISHELL-1, AISHELL-2 benchmark, and an industrial-level 20,000 hour task demonstrate that the proposed Paraformer can attain comparable performance to the state-of-the-art AR transformer, with more than 10x speedup.
Moonshine: Speech Recognition for Live Transcription and Voice Commands
This paper introduces Moonshine, a family of speech recognition models optimized for live transcription and voice command processing. Moonshine is based on an encoder-decoder transformer architecture and employs Rotary Position Embedding (RoPE) instead of traditional absolute position embeddings. The model is trained on speech segments of various lengths, but without using zero-padding, leading to greater efficiency for the encoder during inference time. When benchmarked against OpenAI's Whisper tiny.en, Moonshine Tiny demonstrates a 5x reduction in compute requirements for transcribing a 10-second speech segment while incurring no increase in word error rates across standard evaluation datasets. These results highlight Moonshine's potential for real-time and resource-constrained applications.
AnomalyGPT: Detecting Industrial Anomalies using Large Vision-Language Models
Large Vision-Language Models (LVLMs) such as MiniGPT-4 and LLaVA have demonstrated the capability of understanding images and achieved remarkable performance in various visual tasks. Despite their strong abilities in recognizing common objects due to extensive training datasets, they lack specific domain knowledge and have a weaker understanding of localized details within objects, which hinders their effectiveness in the Industrial Anomaly Detection (IAD) task. On the other hand, most existing IAD methods only provide anomaly scores and necessitate the manual setting of thresholds to distinguish between normal and abnormal samples, which restricts their practical implementation. In this paper, we explore the utilization of LVLM to address the IAD problem and propose AnomalyGPT, a novel IAD approach based on LVLM. We generate training data by simulating anomalous images and producing corresponding textual descriptions for each image. We also employ an image decoder to provide fine-grained semantic and design a prompt learner to fine-tune the LVLM using prompt embeddings. Our AnomalyGPT eliminates the need for manual threshold adjustments, thus directly assesses the presence and locations of anomalies. Additionally, AnomalyGPT supports multi-turn dialogues and exhibits impressive few-shot in-context learning capabilities. With only one normal shot, AnomalyGPT achieves the state-of-the-art performance with an accuracy of 86.1%, an image-level AUC of 94.1%, and a pixel-level AUC of 95.3% on the MVTec-AD dataset. Code is available at https://github.com/CASIA-IVA-Lab/AnomalyGPT.
Nexus-Gen: A Unified Model for Image Understanding, Generation, and Editing
Unified multimodal large language models (MLLMs) aim to integrate multimodal understanding and generation abilities through a single framework. Despite their versatility, existing open-source unified models exhibit performance gaps against domain-specific architectures. To bridge this gap, we present Nexus-Gen, a unified model that synergizes the language reasoning capabilities of LLMs with the image synthesis power of diffusion models. To align the embedding space of the LLM and diffusion model, we conduct a dual-phase alignment training process. (1) The autoregressive LLM learns to predict image embeddings conditioned on multimodal inputs, while (2) the vision decoder is trained to reconstruct high-fidelity images from these embeddings. During training the LLM, we identified a critical discrepancy between the autoregressive paradigm's training and inference phases, where error accumulation in continuous embedding space severely degrades generation quality. To avoid this issue, we introduce a prefilled autoregression strategy that prefills input sequence with position-embedded special tokens instead of continuous embeddings. Through dual-phase training, Nexus-Gen has developed the integrated capability to comprehensively address the image understanding, generation and editing tasks. All models, datasets, and codes are published at https://github.com/modelscope/Nexus-Gen.git to facilitate further advancements across the field.
WaveletGPT: Wavelets Meet Large Language Models
Large Language Models (LLMs) have ushered in a new wave of artificial intelligence advancements impacting every scientific field and discipline. They are trained on a simple objective: to predict the next token given the previous context. We live in a world where most of the data around us, e.g., text, audio, and music, has a multi-scale structure associated with it. This paper infuses LLMs with traditional signal processing ideas, namely wavelets, during pre-training to take advantage of the structure. Without adding any extra parameters to a GPT-style LLM architecture, we achieve the same pre-training performance almost twice as fast in text, raw audio, and symbolic music. This is achieved by imposing a structure on intermediate embeddings. When trained for the same number of training steps, we achieve significant gains in performance, which is comparable to pre-training a larger neural architecture. Our architecture allows every next token prediction access to intermediate embeddings at different temporal resolutions in every Transformer decoder block. This work will hopefully pave the way for incorporating multi-rate signal processing ideas into traditional LLM pre-training. Further, we showcase pushing model performance by improving internal structure instead of just going after scale.
GEM: Empowering LLM for both Embedding Generation and Language Understanding
Large decoder-only language models (LLMs) have achieved remarkable success in generation and reasoning tasks, where they generate text responses given instructions. However, many applications, e.g., retrieval augmented generation (RAG), still rely on separate embedding models to generate text embeddings, which can complicate the system and introduce discrepancies in understanding of the query between the embedding model and LLMs. To address this limitation, we propose a simple self-supervised approach, Generative Embedding large language Model (GEM), that enables any large decoder-only LLM to generate high-quality text embeddings while maintaining its original text generation and reasoning capabilities. Our method inserts new special token(s) into a text body, and generates summarization embedding of the text by manipulating the attention mask. This method could be easily integrated into post-training or fine tuning stages of any existing LLMs. We demonstrate the effectiveness of our approach by applying it to two popular LLM families, ranging from 1B to 8B parameters, and evaluating the transformed models on both text embedding benchmarks (MTEB) and NLP benchmarks (MMLU). The results show that our proposed method significantly improves the original LLMs on MTEB while having a minimal impact on MMLU. Our strong results indicate that our approach can empower LLMs with state-of-the-art text embedding capabilities while maintaining their original NLP performance
Drag-and-Drop LLMs: Zero-Shot Prompt-to-Weights
Modern Parameter-Efficient Fine-Tuning (PEFT) methods such as low-rank adaptation (LoRA) reduce the cost of customizing large language models (LLMs), yet still require a separate optimization run for every downstream dataset. We introduce Drag-and-Drop LLMs (\textit{DnD)}, a prompt-conditioned parameter generator that eliminates per-task training by mapping a handful of unlabeled task prompts directly to LoRA weight updates. A lightweight text encoder distills each prompt batch into condition embeddings, which are then transformed by a cascaded hyper-convolutional decoder into the full set of LoRA matrices. Once trained in a diverse collection of prompt-checkpoint pairs, DnD produces task-specific parameters in seconds, yielding i) up to 12,000times lower overhead than full fine-tuning, ii) average gains up to 30\% in performance over the strongest training LoRAs on unseen common-sense reasoning, math, coding, and multimodal benchmarks, and iii) robust cross-domain generalization despite never seeing the target data or labels. Our results demonstrate that prompt-conditioned parameter generation is a viable alternative to gradient-based adaptation for rapidly specializing LLMs. Our project is available at https://jerryliang24.github.io/DnD{https://jerryliang24.github.io/DnD}.
Dolphin: Long Context as a New Modality for Energy-Efficient On-Device Language Models
This paper presents Dolphin, a novel decoder-decoder architecture for energy-efficient processing of long contexts in language models. Our approach addresses the significant energy consumption and latency challenges inherent in on-device models. Dolphin employs a compact 0.5B parameter decoder to distill extensive contextual information into a memory embedding, substantially reducing the input length for the primary 7B parameter decoder model. Inspired by vision-language models, we repurpose the image embedding projector to encode long textual contexts, effectively treating extended context as a distinct modality. This innovative method enables processing of substantially longer contexts without the typical computational overhead associated with extended input sequences. Empirical evaluations demonstrate a 10-fold improvement in energy efficiency and a 5-fold reduction in latency compared to conventional full-length context processing methods without losing quality of the response. Our work contributes to the development of more sustainable and scalable language models for on-device applications, addressing the critical need for energy-efficient and responsive AI technologies in resource-constrained environments while maintaining the accuracy to understand long contexts. This research has implications for the broader field of natural language processing, particularly in the domain of efficient model design for resource-limited settings. By enabling more sophisticated AI capabilities on edge devices, Dolphin paves the way for advanced language processing in a wide range of applications where computational resources are at a premium. The Dolphin model is publicly available at https://huggingface.co/NexaAIDev/Dolphin.
CoCa: Contrastive Captioners are Image-Text Foundation Models
Exploring large-scale pretrained foundation models is of significant interest in computer vision because these models can be quickly transferred to many downstream tasks. This paper presents Contrastive Captioner (CoCa), a minimalist design to pretrain an image-text encoder-decoder foundation model jointly with contrastive loss and captioning loss, thereby subsuming model capabilities from contrastive approaches like CLIP and generative methods like SimVLM. In contrast to standard encoder-decoder transformers where all decoder layers attend to encoder outputs, CoCa omits cross-attention in the first half of decoder layers to encode unimodal text representations, and cascades the remaining decoder layers which cross-attend to the image encoder for multimodal image-text representations. We apply a contrastive loss between unimodal image and text embeddings, in addition to a captioning loss on the multimodal decoder outputs which predicts text tokens autoregressively. By sharing the same computational graph, the two training objectives are computed efficiently with minimal overhead. CoCa is pretrained end-to-end and from scratch on both web-scale alt-text data and annotated images by treating all labels simply as text, seamlessly unifying natural language supervision for representation learning. Empirically, CoCa achieves state-of-the-art performance with zero-shot transfer or minimal task-specific adaptation on a broad range of downstream tasks, spanning visual recognition (ImageNet, Kinetics-400/600/700, Moments-in-Time), crossmodal retrieval (MSCOCO, Flickr30K, MSR-VTT), multimodal understanding (VQA, SNLI-VE, NLVR2), and image captioning (MSCOCO, NoCaps). Notably on ImageNet classification, CoCa obtains 86.3% zero-shot top-1 accuracy, 90.6% with a frozen encoder and learned classification head, and new state-of-the-art 91.0% top-1 accuracy on ImageNet with a finetuned encoder.
The Impact of Positional Encoding on Length Generalization in Transformers
Length generalization, the ability to generalize from small training context sizes to larger ones, is a critical challenge in the development of Transformer-based language models. Positional encoding (PE) has been identified as a major factor influencing length generalization, but the exact impact of different PE schemes on extrapolation in downstream tasks remains unclear. In this paper, we conduct a systematic empirical study comparing the length generalization performance of decoder-only Transformers with five different position encoding approaches including Absolute Position Embedding (APE), T5's Relative PE, ALiBi, and Rotary, in addition to Transformers without positional encoding (NoPE). Our evaluation encompasses a battery of reasoning and mathematical tasks. Our findings reveal that the most commonly used positional encoding methods, such as ALiBi, Rotary, and APE, are not well suited for length generalization in downstream tasks. More importantly, NoPE outperforms other explicit positional encoding methods while requiring no additional computation. We theoretically demonstrate that NoPE can represent both absolute and relative PEs, but when trained with SGD, it mostly resembles T5's relative PE attention patterns. Finally, we find that scratchpad is not always helpful to solve length generalization and its format highly impacts the model's performance. Overall, our work suggests that explicit position embeddings are not essential for decoder-only Transformers to generalize well to longer sequences.
WriteViT: Handwritten Text Generation with Vision Transformer
Humans can quickly generalize handwriting styles from a single example by intuitively separating content from style. Machines, however, struggle with this task, especially in low-data settings, often missing subtle spatial and stylistic cues. Motivated by this gap, we introduce WriteViT, a one-shot handwritten text synthesis framework that incorporates Vision Transformers (ViT), a family of models that have shown strong performance across various computer vision tasks. WriteViT integrates a ViT-based Writer Identifier for extracting style embeddings, a multi-scale generator built with Transformer encoder-decoder blocks enhanced by conditional positional encoding (CPE), and a lightweight ViT-based recognizer. While previous methods typically rely on CNNs or CRNNs, our design leverages transformers in key components to better capture both fine-grained stroke details and higher-level style information. Although handwritten text synthesis has been widely explored, its application to Vietnamese -- a language rich in diacritics and complex typography -- remains limited. Experiments on Vietnamese and English datasets demonstrate that WriteViT produces high-quality, style-consistent handwriting while maintaining strong recognition performance in low-resource scenarios. These results highlight the promise of transformer-based designs for multilingual handwriting generation and efficient style adaptation.
AlphaViT: A Flexible Game-Playing AI for Multiple Games and Variable Board Sizes
This paper presents novel game-playing AI agents based on the AlphaZero framework, enhanced with Vision Transformer (ViT): AlphaViT, AlphaViD, and AlphaVDA. These agents are designed to play multiple board games of various sizes using a single network with shared weights, thereby overcoming AlphaZero's limitation of fixed-board-size constraints. AlphaViT employs only a transformer encoder, whereas AlphaViD and AlphaVDA incorporate both transformer encoders and decoders. In AlphaViD, the decoder processes outputs from the encoder, whereas AlphaVDA uses a learnable embeddings as the decoder input. The additional decoder layers in AlphaViD and AlphaVDA provide flexibility to adapt to various action spaces and board sizes. Experimental results show that the proposed agents, trained on either individual games or multiple games simultaneously, consistently outperform traditional algorithms such as Minimax and Monte Carlo Tree Search and approach the performance of AlphaZero, despite using a single deep neural network (DNN) with shared weights. In particular, AlphaViT shows strong performance across all tested games. Furthermore, fine-tuning the DNN using pre-trained weights from small-board games accelerates convergence and improves performance, particularly in Gomoku. Interestingly, simultaneous training on multiple games yields performance comparable to, or even surpassing, single-game training. These results indicate the potential of transformer-based architectures to develop more flexible and robust game-playing AI agents that excel in multiple games and dynamic environments.
Isomorphic-Consistent Variational Graph Auto-Encoders for Multi-Level Graph Representation Learning
Graph representation learning is a fundamental research theme and can be generalized to benefit multiple downstream tasks from the node and link levels to the higher graph level. In practice, it is desirable to develop task-agnostic general graph representation learning methods that are typically trained in an unsupervised manner. Related research reveals that the power of graph representation learning methods depends on whether they can differentiate distinct graph structures as different embeddings and map isomorphic graphs to consistent embeddings (i.e., the isomorphic consistency of graph models). However, for task-agnostic general graph representation learning, existing unsupervised graph models, represented by the variational graph auto-encoders (VGAEs), can only keep the isomorphic consistency within the subgraphs of 1-hop neighborhoods and thus usually manifest inferior performance on the more difficult higher-level tasks. To overcome the limitations of existing unsupervised methods, in this paper, we propose the Isomorphic-Consistent VGAE (IsoC-VGAE) for multi-level task-agnostic graph representation learning. We first devise a decoding scheme to provide a theoretical guarantee of keeping the isomorphic consistency under the settings of unsupervised learning. We then propose the Inverse Graph Neural Network (Inv-GNN) decoder as its intuitive realization, which trains the model via reconstructing the GNN node embeddings with multi-hop neighborhood information, so as to maintain the high-order isomorphic consistency within the VGAE framework. We conduct extensive experiments on the representative graph learning tasks at different levels, including node classification, link prediction and graph classification, and the results verify that our proposed model generally outperforms both the state-of-the-art unsupervised methods and representative supervised methods.
Style Description based Text-to-Speech with Conditional Prosodic Layer Normalization based Diffusion GAN
In this paper, we present a Diffusion GAN based approach (Prosodic Diff-TTS) to generate the corresponding high-fidelity speech based on the style description and content text as an input to generate speech samples within only 4 denoising steps. It leverages the novel conditional prosodic layer normalization to incorporate the style embeddings into the multi head attention based phoneme encoder and mel spectrogram decoder based generator architecture to generate the speech. The style embedding is generated by fine tuning the pretrained BERT model on auxiliary tasks such as pitch, speaking speed, emotion,gender classifications. We demonstrate the efficacy of our proposed architecture on multi-speaker LibriTTS and PromptSpeech datasets, using multiple quantitative metrics that measure generated accuracy and MOS.
Towards Zero-Shot Scale-Aware Monocular Depth Estimation
Monocular depth estimation is scale-ambiguous, and thus requires scale supervision to produce metric predictions. Even so, the resulting models will be geometry-specific, with learned scales that cannot be directly transferred across domains. Because of that, recent works focus instead on relative depth, eschewing scale in favor of improved up-to-scale zero-shot transfer. In this work we introduce ZeroDepth, a novel monocular depth estimation framework capable of predicting metric scale for arbitrary test images from different domains and camera parameters. This is achieved by (i) the use of input-level geometric embeddings that enable the network to learn a scale prior over objects; and (ii) decoupling the encoder and decoder stages, via a variational latent representation that is conditioned on single frame information. We evaluated ZeroDepth targeting both outdoor (KITTI, DDAD, nuScenes) and indoor (NYUv2) benchmarks, and achieved a new state-of-the-art in both settings using the same pre-trained model, outperforming methods that train on in-domain data and require test-time scaling to produce metric estimates.
MonoDGP: Monocular 3D Object Detection with Decoupled-Query and Geometry-Error Priors
Perspective projection has been extensively utilized in monocular 3D object detection methods. It introduces geometric priors from 2D bounding boxes and 3D object dimensions to reduce the uncertainty of depth estimation. However, due to depth errors originating from the object's visual surface, the height of the bounding box often fails to represent the actual projected central height, which undermines the effectiveness of geometric depth. Direct prediction for the projected height unavoidably results in a loss of 2D priors, while multi-depth prediction with complex branches does not fully leverage geometric depth. This paper presents a Transformer-based monocular 3D object detection method called MonoDGP, which adopts perspective-invariant geometry errors to modify the projection formula. We also try to systematically discuss and explain the mechanisms and efficacy behind geometry errors, which serve as a simple but effective alternative to multi-depth prediction. Additionally, MonoDGP decouples the depth-guided decoder and constructs a 2D decoder only dependent on visual features, providing 2D priors and initializing object queries without the disturbance of 3D detection. To further optimize and fine-tune input tokens of the transformer decoder, we also introduce a Region Segment Head (RSH) that generates enhanced features and segment embeddings. Our monocular method demonstrates state-of-the-art performance on the KITTI benchmark without extra data. Code is available at https://github.com/PuFanqi23/MonoDGP.
Efficient Episodic Memory Utilization of Cooperative Multi-Agent Reinforcement Learning
In cooperative multi-agent reinforcement learning (MARL), agents aim to achieve a common goal, such as defeating enemies or scoring a goal. Existing MARL algorithms are effective but still require significant learning time and often get trapped in local optima by complex tasks, subsequently failing to discover a goal-reaching policy. To address this, we introduce Efficient episodic Memory Utilization (EMU) for MARL, with two primary objectives: (a) accelerating reinforcement learning by leveraging semantically coherent memory from an episodic buffer and (b) selectively promoting desirable transitions to prevent local convergence. To achieve (a), EMU incorporates a trainable encoder/decoder structure alongside MARL, creating coherent memory embeddings that facilitate exploratory memory recall. To achieve (b), EMU introduces a novel reward structure called episodic incentive based on the desirability of states. This reward improves the TD target in Q-learning and acts as an additional incentive for desirable transitions. We provide theoretical support for the proposed incentive and demonstrate the effectiveness of EMU compared to conventional episodic control. The proposed method is evaluated in StarCraft II and Google Research Football, and empirical results indicate further performance improvement over state-of-the-art methods.
Emotion-Aware Transformer Encoder for Empathetic Dialogue Generation
Modern day conversational agents are trained to emulate the manner in which humans communicate. To emotionally bond with the user, these virtual agents need to be aware of the affective state of the user. Transformers are the recent state of the art in sequence-to-sequence learning that involves training an encoder-decoder model with word embeddings from utterance-response pairs. We propose an emotion-aware transformer encoder for capturing the emotional quotient in the user utterance in order to generate human-like empathetic responses. The contributions of our paper are as follows: 1) An emotion detector module trained on the input utterances determines the affective state of the user in the initial phase 2) A novel transformer encoder is proposed that adds and normalizes the word embedding with emotion embedding thereby integrating the semantic and affective aspects of the input utterance 3) The encoder and decoder stacks belong to the Transformer-XL architecture which is the recent state of the art in language modeling. Experimentation on the benchmark Facebook AI empathetic dialogue dataset confirms the efficacy of our model from the higher BLEU-4 scores achieved for the generated responses as compared to existing methods. Emotionally intelligent virtual agents are now a reality and inclusion of affect as a modality in all human-machine interfaces is foreseen in the immediate future.
Constructing a Singing Style Caption Dataset
Singing voice synthesis and conversion have emerged as significant subdomains of voice generation, leading to much demands on prompt-conditioned generation. Unlike common voice data, generating a singing voice requires an understanding of various associated vocal and musical characteristics, such as the vocal tone of the singer or emotional expressions. However, existing open-source audio-text datasets for voice generation tend to capture only a very limited range of attributes, often missing musical characteristics of the audio. To fill this gap, we introduce S2Cap, an audio-text pair dataset with a diverse set of attributes. S2Cap consists of pairs of textual prompts and music audio samples with a wide range of vocal and musical attributes, including pitch, volume, tempo, mood, singer's gender and age, and musical genre and emotional expression. Utilizing S2Cap, we suggest an effective novel baseline algorithm for singing style captioning. Singing style captioning is a relative task to voice generation that generates text descriptions of vocal characteristics, which we first suggested. First, to mitigate the misalignment between the audio encoder and the text decoder, we present a novel mechanism called CRESCENDO, which utilizes positive-pair similarity learning to synchronize the embedding spaces of a pretrained audio encoder to get similar embeddings with a text encoder. We additionally supervise the model using the singer's voice, which is demixed by the accompaniment. This supervision allows the model to more accurately capture vocal characteristics, leading to improved singing style captions that better reflect the style of the singer. The dataset and the codes are available at https://github.com/HJ-Ok/S2cap.
A Pre-training Based Personalized Dialogue Generation Model with Persona-sparse Data
Endowing dialogue systems with personas is essential to deliver more human-like conversations. However, this problem is still far from well explored due to the difficulties of both embodying personalities in natural languages and the persona sparsity issue observed in most dialogue corpora. This paper proposes a pre-training based personalized dialogue model that can generate coherent responses using persona-sparse dialogue data. In this method, a pre-trained language model is used to initialize an encoder and decoder, and personal attribute embeddings are devised to model richer dialogue contexts by encoding speakers' personas together with dialogue histories. Further, to incorporate the target persona in the decoding process and to balance its contribution, an attention routing structure is devised in the decoder to merge features extracted from the target persona and dialogue contexts using dynamically predicted weights. Our model can utilize persona-sparse dialogues in a unified manner during the training process, and can also control the amount of persona-related features to exhibit during the inference process. Both automatic and manual evaluation demonstrates that the proposed model outperforms state-of-the-art methods for generating more coherent and persona consistent responses with persona-sparse data.
CAMEL: Cross-Attention Enhanced Mixture-of-Experts and Language Bias for Code-Switching Speech Recognition
Code-switching automatic speech recognition (ASR) aims to transcribe speech that contains two or more languages accurately. To better capture language-specific speech representations and address language confusion in code-switching ASR, the mixture-of-experts (MoE) architecture and an additional language diarization (LD) decoder are commonly employed. However, most researches remain stagnant in simple operations like weighted summation or concatenation to fuse languagespecific speech representations, leaving significant opportunities to explore the enhancement of integrating language bias information. In this paper, we introduce CAMEL, a cross-attention-based MoE and language bias approach for code-switching ASR. Specifically, after each MoE layer, we fuse language-specific speech representations with cross-attention, leveraging its strong contextual modeling abilities. Additionally, we design a source attention-based mechanism to incorporate the language information from the LD decoder output into text embeddings. Experimental results demonstrate that our approach achieves state-of-the-art performance on the SEAME, ASRU200, and ASRU700+LibriSpeech460 Mandarin-English code-switching ASR datasets.
UI-JEPA: Towards Active Perception of User Intent through Onscreen User Activity
Generating user intent from a sequence of user interface (UI) actions is a core challenge in comprehensive UI understanding. Recent advancements in multimodal large language models (MLLMs) have led to substantial progress in this area, but their demands for extensive model parameters, computing power, and high latency makes them impractical for scenarios requiring lightweight, on-device solutions with low latency or heightened privacy. Additionally, the lack of high-quality datasets has hindered the development of such lightweight models. To address these challenges, we propose UI-JEPA, a novel framework that employs masking strategies to learn abstract UI embeddings from unlabeled data through self-supervised learning, combined with an LLM decoder fine-tuned for user intent prediction. We also introduce two new UI-grounded multimodal datasets, "Intent in the Wild" (IIW) and "Intent in the Tame" (IIT), designed for few-shot and zero-shot UI understanding tasks. IIW consists of 1.7K videos across 219 intent categories, while IIT contains 914 videos across 10 categories. We establish the first baselines for these datasets, showing that representations learned using a JEPA-style objective, combined with an LLM decoder, can achieve user intent predictions that match the performance of state-of-the-art large MLLMs, but with significantly reduced annotation and deployment resources. Measured by intent similarity scores, UI-JEPA outperforms GPT-4 Turbo and Claude 3.5 Sonnet by 10.0% and 7.2% respectively, averaged across two datasets. Notably, UI-JEPA accomplishes the performance with a 50.5x reduction in computational cost and a 6.6x improvement in latency in the IIW dataset. These results underscore the effectiveness of UI-JEPA, highlighting its potential for lightweight, high-performance UI understanding.
HNeRV: A Hybrid Neural Representation for Videos
Implicit neural representations store videos as neural networks and have performed well for various vision tasks such as video compression and denoising. With frame index or positional index as input, implicit representations (NeRV, E-NeRV, \etc) reconstruct video from fixed and content-agnostic embeddings. Such embedding largely limits the regression capacity and internal generalization for video interpolation. In this paper, we propose a Hybrid Neural Representation for Videos (HNeRV), where a learnable encoder generates content-adaptive embeddings, which act as the decoder input. Besides the input embedding, we introduce HNeRV blocks, which ensure model parameters are evenly distributed across the entire network, such that higher layers (layers near the output) can have more capacity to store high-resolution content and video details. With content-adaptive embeddings and re-designed architecture, HNeRV outperforms implicit methods in video regression tasks for both reconstruction quality (+4.7 PSNR) and convergence speed (16times faster), and shows better internal generalization. As a simple and efficient video representation, HNeRV also shows decoding advantages for speed, flexibility, and deployment, compared to traditional codecs~(H.264, H.265) and learning-based compression methods. Finally, we explore the effectiveness of HNeRV on downstream tasks such as video compression and video inpainting. We provide project page at https://haochen-rye.github.io/HNeRV, and Code at https://github.com/haochen-rye/HNeRV
VX2TEXT: End-to-End Learning of Video-Based Text Generation From Multimodal Inputs
We present Vx2Text, a framework for text generation from multimodal inputs consisting of video plus text, speech, or audio. In order to leverage transformer networks, which have been shown to be effective at modeling language, each modality is first converted into a set of language embeddings by a learnable tokenizer. This allows our approach to perform multimodal fusion in the language space, thus eliminating the need for ad-hoc cross-modal fusion modules. To address the non-differentiability of tokenization on continuous inputs (e.g., video or audio), we utilize a relaxation scheme that enables end-to-end training. Furthermore, unlike prior encoder-only models, our network includes an autoregressive decoder to generate open-ended text from the multimodal embeddings fused by the language encoder. This renders our approach fully generative and makes it directly applicable to different "video+x to text" problems without the need to design specialized network heads for each task. The proposed framework is not only conceptually simple but also remarkably effective: experiments demonstrate that our approach based on a single architecture outperforms the state-of-the-art on three video-based text-generation tasks -- captioning, question answering and audio-visual scene-aware dialog.
Slow-Fast Architecture for Video Multi-Modal Large Language Models
Balancing temporal resolution and spatial detail under limited compute budget remains a key challenge for video-based multi-modal large language models (MLLMs). Existing methods typically compress video representations using predefined rules before feeding them into the LLM, resulting in irreversible information loss and often ignoring input instructions. To address this, we propose a novel slow-fast architecture that naturally circumvents this trade-off, enabling the use of more input frames while preserving spatial details. Inspired by how humans first skim a video before focusing on relevant parts, our slow-fast design employs a dual-token strategy: 1) "fast" visual tokens -- a compact set of compressed video features -- are fed into the LLM alongside text embeddings to provide a quick overview; 2) "slow" visual tokens -- uncompressed video features -- are cross-attended by text embeddings through specially designed hybrid decoder layers, enabling instruction-aware extraction of relevant visual details with linear complexity. We conduct systematic exploration to optimize both the overall architecture and key components. Experiments show that our model significantly outperforms self-attention-only baselines, extending the input capacity from 16 to 128 frames with just a 3% increase in computation, and achieving a 16% average performance improvement across five video understanding benchmarks. Our 7B model achieves state-of-the-art performance among models of similar size. Furthermore, our slow-fast architecture is a plug-and-play design that can be integrated into other video MLLMs to improve efficiency and scalability.
Unveiling the Potential of Segment Anything Model 2 for RGB-Thermal Semantic Segmentation with Language Guidance
The perception capability of robotic systems relies on the richness of the dataset. Although Segment Anything Model 2 (SAM2), trained on large datasets, demonstrates strong perception potential in perception tasks, its inherent training paradigm prevents it from being suitable for RGB-T tasks. To address these challenges, we propose SHIFNet, a novel SAM2-driven Hybrid Interaction Paradigm that unlocks the potential of SAM2 with linguistic guidance for efficient RGB-Thermal perception. Our framework consists of two key components: (1) Semantic-Aware Cross-modal Fusion (SACF) module that dynamically balances modality contributions through text-guided affinity learning, overcoming SAM2's inherent RGB bias; (2) Heterogeneous Prompting Decoder (HPD) that enhances global semantic information through a semantic enhancement module and then combined with category embeddings to amplify cross-modal semantic consistency. With 32.27M trainable parameters, SHIFNet achieves state-of-the-art segmentation performance on public benchmarks, reaching 89.8% on PST900 and 67.8% on FMB, respectively. The framework facilitates the adaptation of pre-trained large models to RGB-T segmentation tasks, effectively mitigating the high costs associated with data collection while endowing robotic systems with comprehensive perception capabilities. The source code will be made publicly available at https://github.com/iAsakiT3T/SHIFNet.
Towards Making the Most of Multilingual Pretraining for Zero-Shot Neural Machine Translation
This paper demonstrates that multilingual pretraining and multilingual fine-tuning are both critical for facilitating cross-lingual transfer in zero-shot translation, where the neural machine translation (NMT) model is tested on source languages unseen during supervised training. Following this idea, we present SixT+, a strong many-to-English NMT model that supports 100 source languages but is trained with a parallel dataset in only six source languages. SixT+ initializes the decoder embedding and the full encoder with XLM-R large and then trains the encoder and decoder layers with a simple two-stage training strategy. SixT+ achieves impressive performance on many-to-English translation. It significantly outperforms CRISS and m2m-100, two strong multilingual NMT systems, with an average gain of 7.2 and 5.0 BLEU respectively. Additionally, SixT+ offers a set of model parameters that can be further fine-tuned to other unsupervised tasks. We demonstrate that adding SixT+ initialization outperforms state-of-the-art explicitly designed unsupervised NMT models on Si<->En and Ne<->En by over 1.2 average BLEU. When applied to zero-shot cross-lingual abstractive summarization, it produces an average performance gain of 12.3 ROUGE-L over mBART-ft. We conduct detailed analyses to understand the key ingredients of SixT+, including multilinguality of the auxiliary parallel data, positional disentangled encoder, and the cross-lingual transferability of its encoder.
Conditional DETR for Fast Training Convergence
The recently-developed DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergence, and present a conditional cross-attention mechanism for fast DETR training. Our approach is motivated by that the cross-attention in DETR relies highly on the content embeddings for localizing the four extremities and predicting the box, which increases the need for high-quality content embeddings and thus the training difficulty. Our approach, named conditional DETR, learns a conditional spatial query from the decoder embedding for decoder multi-head cross-attention. The benefit is that through the conditional spatial query, each cross-attention head is able to attend to a band containing a distinct region, e.g., one object extremity or a region inside the object box. This narrows down the spatial range for localizing the distinct regions for object classification and box regression, thus relaxing the dependence on the content embeddings and easing the training. Empirical results show that conditional DETR converges 6.7x faster for the backbones R50 and R101 and 10x faster for stronger backbones DC5-R50 and DC5-R101. Code is available at https://github.com/Atten4Vis/ConditionalDETR.
Text Embeddings Reveal (Almost) As Much As Text
How much private information do text embeddings reveal about the original text? We investigate the problem of embedding inversion, reconstructing the full text represented in dense text embeddings. We frame the problem as controlled generation: generating text that, when reembedded, is close to a fixed point in latent space. We find that although a na\"ive model conditioned on the embedding performs poorly, a multi-step method that iteratively corrects and re-embeds text is able to recover 92% of 32-token text inputs exactly. We train our model to decode text embeddings from two state-of-the-art embedding models, and also show that our model can recover important personal information (full names) from a dataset of clinical notes. Our code is available on Github: https://github.com/jxmorris12/vec2text{github.com/jxmorris12/vec2text}.
RAR-b: Reasoning as Retrieval Benchmark
Semantic textual similartiy (STS) and information retrieval tasks (IR) tasks have been the two major avenues to record the progress of embedding models in the past few years. Under the emerging Retrieval-augmented Generation (RAG) paradigm, we envision the need to evaluate next-level language understanding abilities of embedding models, and take a conscious look at the reasoning abilities stored in them. Addressing this, we pose the question: Can retrievers solve reasoning problems? By transforming reasoning tasks into retrieval tasks, we find that without specifically trained for reasoning-level language understanding, current state-of-the-art retriever models may still be far from being competent for playing the role of assisting LLMs, especially in reasoning-intensive tasks. Moreover, albeit trained to be aware of instructions, instruction-aware IR models are often better off without instructions in inference time for reasoning tasks, posing an overlooked retriever-LLM behavioral gap for the research community to align. However, recent decoder-based embedding models show great promise in narrowing the gap, highlighting the pathway for embedding models to achieve reasoning-level language understanding. We also show that, although current off-the-shelf re-ranker models fail on these tasks, injecting reasoning abilities into them through fine-tuning still appears easier than doing so to bi-encoders, and we are able to achieve state-of-the-art performance across all tasks by fine-tuning a reranking model. We release Reasoning as Retrieval Benchmark (RAR-b), a holistic suite of tasks and settings to evaluate the reasoning abilities stored in retriever models. RAR-b is available at https://github.com/gowitheflow-1998/RAR-b.
Instruction-based Time Series Editing
In time series editing, we aim to modify some properties of a given time series without altering others. For example, when analyzing a hospital patient's blood pressure, we may add a sudden early drop and observe how it impacts their future while preserving other conditions. Existing diffusion-based editors rely on rigid, predefined attribute vectors as conditions and produce all-or-nothing edits through sampling. This attribute- and sampling-based approach limits flexibility in condition format and lacks customizable control over editing strength. To overcome these limitations, we introduce Instruction-based Time Series Editing, where users specify intended edits using natural language. This allows users to express a wider range of edits in a more accessible format. We then introduce InstructTime, the first instruction-based time series editor. InstructTime takes in time series and instructions, embeds them into a shared multi-modal representation space, then decodes their embeddings to generate edited time series. By learning a structured multi-modal representation space, we can easily interpolate between embeddings to achieve varying degrees of edit. To handle local and global edits together, we propose multi-resolution encoders. In our experiments, we use synthetic and real datasets and find that InstructTime is a state-of-the-art time series editor: InstructTime achieves high-quality edits with controllable strength, can generalize to unseen instructions, and can be easily adapted to unseen conditions through few-shot learning.
Learn to Sing by Listening: Building Controllable Virtual Singer by Unsupervised Learning from Voice Recordings
The virtual world is being established in which digital humans are created indistinguishable from real humans. Producing their audio-related capabilities is crucial since voice conveys extensive personal characteristics. We aim to create a controllable audio-form virtual singer; however, supervised modeling and controlling all different factors of the singing voice, such as timbre, tempo, pitch, and lyrics, is extremely difficult since accurately labeling all such information needs enormous labor work. In this paper, we propose a framework that could digitize a person's voice by simply "listening" to the clean voice recordings of any content in a fully unsupervised manner and predict singing voices even only using speaking recordings. A variational auto-encoder (VAE) based framework is developed, which leverages a set of pre-trained models to encode the audio as various hidden embeddings representing different factors of the singing voice, and further decodes the embeddings into raw audio. By manipulating the hidden embeddings for different factors, the resulting singing voices can be controlled, and new virtual singers can also be further generated by interpolating between timbres. Evaluations of different types of experiments demonstrate the proposed method's effectiveness. The proposed method is the critical technique for producing the AI choir, which empowered the human-AI symbiotic orchestra in Hong Kong in July 2022.
Embedding-Free Transformer with Inference Spatial Reduction for Efficient Semantic Segmentation
We present an Encoder-Decoder Attention Transformer, EDAFormer, which consists of the Embedding-Free Transformer (EFT) encoder and the all-attention decoder leveraging our Embedding-Free Attention (EFA) structure. The proposed EFA is a novel global context modeling mechanism that focuses on functioning the global non-linearity, not the specific roles of the query, key and value. For the decoder, we explore the optimized structure for considering the globality, which can improve the semantic segmentation performance. In addition, we propose a novel Inference Spatial Reduction (ISR) method for the computational efficiency. Different from the previous spatial reduction attention methods, our ISR method further reduces the key-value resolution at the inference phase, which can mitigate the computation-performance trade-off gap for the efficient semantic segmentation. Our EDAFormer shows the state-of-the-art performance with the efficient computation compared to the existing transformer-based semantic segmentation models in three public benchmarks, including ADE20K, Cityscapes and COCO-Stuff. Furthermore, our ISR method reduces the computational cost by up to 61% with minimal mIoU performance degradation on Cityscapes dataset. The code is available at https://github.com/hyunwoo137/EDAFormer.