Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSubset Selection Based On Multiple Rankings in the Presence of Bias: Effectiveness of Fairness Constraints for Multiwinner Voting Score Functions
We consider the problem of subset selection where one is given multiple rankings of items and the goal is to select the highest ``quality'' subset. Score functions from the multiwinner voting literature have been used to aggregate rankings into quality scores for subsets. We study this setting of subset selection problems when, in addition, rankings may contain systemic or unconscious biases toward a group of items. For a general model of input rankings and biases, we show that requiring the selected subset to satisfy group fairness constraints can improve the quality of the selection with respect to unbiased rankings. Importantly, we show that for fairness constraints to be effective, different multiwinner score functions may require a drastically different number of rankings: While for some functions, fairness constraints need an exponential number of rankings to recover a close-to-optimal solution, for others, this dependency is only polynomial. This result relies on a novel notion of ``smoothness'' of submodular functions in this setting that quantifies how well a function can ``correctly'' assess the quality of items in the presence of bias. The results in this paper can be used to guide the choice of multiwinner score functions for the subset selection setting considered here; we additionally provide a tool to empirically enable this.
Equivariant Scalar Fields for Molecular Docking with Fast Fourier Transforms
Molecular docking is critical to structure-based virtual screening, yet the throughput of such workflows is limited by the expensive optimization of scoring functions involved in most docking algorithms. We explore how machine learning can accelerate this process by learning a scoring function with a functional form that allows for more rapid optimization. Specifically, we define the scoring function to be the cross-correlation of multi-channel ligand and protein scalar fields parameterized by equivariant graph neural networks, enabling rapid optimization over rigid-body degrees of freedom with fast Fourier transforms. The runtime of our approach can be amortized at several levels of abstraction, and is particularly favorable for virtual screening settings with a common binding pocket. We benchmark our scoring functions on two simplified docking-related tasks: decoy pose scoring and rigid conformer docking. Our method attains similar but faster performance on crystal structures compared to the widely-used Vina and Gnina scoring functions, and is more robust on computationally predicted structures. Code is available at https://github.com/bjing2016/scalar-fields.
Beyond Log-Concavity: Theory and Algorithm for Sum-Log-Concave Optimization
This paper extends the classic theory of convex optimization to the minimization of functions that are equal to the negated logarithm of what we term as a sum-log-concave function, i.e., a sum of log-concave functions. In particular, we show that such functions are in general not convex but still satisfy generalized convexity inequalities. These inequalities unveil the key importance of a certain vector that we call the cross-gradient and that is, in general, distinct from the usual gradient. Thus, we propose the Cross Gradient Descent (XGD) algorithm moving in the opposite direction of the cross-gradient and derive a convergence analysis. As an application of our sum-log-concave framework, we introduce the so-called checkered regression method relying on a sum-log-concave function. This classifier extends (multiclass) logistic regression to non-linearly separable problems since it is capable of tessellating the feature space by using any given number of hyperplanes, creating a checkerboard-like pattern of decision regions.
Neural Network-Based Score Estimation in Diffusion Models: Optimization and Generalization
Diffusion models have emerged as a powerful tool rivaling GANs in generating high-quality samples with improved fidelity, flexibility, and robustness. A key component of these models is to learn the score function through score matching. Despite empirical success on various tasks, it remains unclear whether gradient-based algorithms can learn the score function with a provable accuracy. As a first step toward answering this question, this paper establishes a mathematical framework for analyzing score estimation using neural networks trained by gradient descent. Our analysis covers both the optimization and the generalization aspects of the learning procedure. In particular, we propose a parametric form to formulate the denoising score-matching problem as a regression with noisy labels. Compared to the standard supervised learning setup, the score-matching problem introduces distinct challenges, including unbounded input, vector-valued output, and an additional time variable, preventing existing techniques from being applied directly. In this paper, we show that with proper designs, the evolution of neural networks during training can be accurately modeled by a series of kernel regression tasks. Furthermore, by applying an early-stopping rule for gradient descent and leveraging recent developments in neural tangent kernels, we establish the first generalization error (sample complexity) bounds for learning the score function with neural networks, despite the presence of noise in the observations. Our analysis is grounded in a novel parametric form of the neural network and an innovative connection between score matching and regression analysis, facilitating the application of advanced statistical and optimization techniques.
Formalizing Preferences Over Runtime Distributions
When trying to solve a computational problem, we are often faced with a choice between algorithms that are guaranteed to return the right answer but differ in their runtime distributions (e.g., SAT solvers, sorting algorithms). This paper aims to lay theoretical foundations for such choices by formalizing preferences over runtime distributions. It might seem that we should simply prefer the algorithm that minimizes expected runtime. However, such preferences would be driven by exactly how slow our algorithm is on bad inputs, whereas in practice we are typically willing to cut off occasional, sufficiently long runs before they finish. We propose a principled alternative, taking a utility-theoretic approach to characterize the scoring functions that describe preferences over algorithms. These functions depend on the way our value for solving our problem decreases with time and on the distribution from which captimes are drawn. We describe examples of realistic utility functions and show how to leverage a maximum-entropy approach for modeling underspecified captime distributions. Finally, we show how to efficiently estimate an algorithm's expected utility from runtime samples.
Optimistic Online Mirror Descent for Bridging Stochastic and Adversarial Online Convex Optimization
Stochastically Extended Adversarial (SEA) model is introduced by Sachs et al. [2022] as an interpolation between stochastic and adversarial online convex optimization. Under the smoothness condition, they demonstrate that the expected regret of optimistic follow-the-regularized-leader (FTRL) depends on the cumulative stochastic variance sigma_{1:T}^2 and the cumulative adversarial variation Sigma_{1:T}^2 for convex functions. They also provide a slightly weaker bound based on the maximal stochastic variance sigma_{max}^2 and the maximal adversarial variation Sigma_{max}^2 for strongly convex functions. Inspired by their work, we investigate the theoretical guarantees of optimistic online mirror descent (OMD) for the SEA model. For convex and smooth functions, we obtain the same O(sigma_{1:T^2}+Sigma_{1:T^2}) regret bound, without the convexity requirement of individual functions. For strongly convex and smooth functions, we establish an O(min{log (sigma_{1:T}^2+Sigma_{1:T}^2), (sigma_{max}^2 + Sigma_{max}^2) log T}) bound, better than their O((sigma_{max}^2 + Sigma_{max}^2) log T) bound. For exp-concave and smooth functions, we achieve a new O(dlog(sigma_{1:T}^2+Sigma_{1:T}^2)) bound. Owing to the OMD framework, we can further extend our result to obtain dynamic regret guarantees, which are more favorable in non-stationary online scenarios. The attained results allow us to recover excess risk bounds of the stochastic setting and regret bounds of the adversarial setting, and derive new guarantees for many intermediate scenarios.
Accelerated Stochastic Optimization Methods under Quasar-convexity
Non-convex optimization plays a key role in a growing number of machine learning applications. This motivates the identification of specialized structure that enables sharper theoretical analysis. One such identified structure is quasar-convexity, a non-convex generalization of convexity that subsumes convex functions. Existing algorithms for minimizing quasar-convex functions in the stochastic setting have either high complexity or slow convergence, which prompts us to derive a new class of stochastic methods for optimizing smooth quasar-convex functions. We demonstrate that our algorithms have fast convergence and outperform existing algorithms on several examples, including the classical problem of learning linear dynamical systems. We also present a unified analysis of our newly proposed algorithms and a previously studied deterministic algorithm.
CoLiDE: Concomitant Linear DAG Estimation
We deal with the combinatorial problem of learning directed acyclic graph (DAG) structure from observational data adhering to a linear structural equation model (SEM). Leveraging advances in differentiable, nonconvex characterizations of acyclicity, recent efforts have advocated a continuous constrained optimization paradigm to efficiently explore the space of DAGs. Most existing methods employ lasso-type score functions to guide this search, which (i) require expensive penalty parameter retuning when the unknown SEM noise variances change across problem instances; and (ii) implicitly rely on limiting homoscedasticity assumptions. In this work, we propose a new convex score function for sparsity-aware learning of linear DAGs, which incorporates concomitant estimation of scale and thus effectively decouples the sparsity parameter from the exogenous noise levels. Regularization via a smooth, nonconvex acyclicity penalty term yields CoLiDE (Concomitant Linear DAG Estimation), a regression-based criterion amenable to efficient gradient computation and closed-form estimation of noise variances in heteroscedastic scenarios. Our algorithm outperforms state-of-the-art methods without incurring added complexity, especially when the DAGs are larger and the noise level profile is heterogeneous. We also find CoLiDE exhibits enhanced stability manifested via reduced standard deviations in several domain-specific metrics, underscoring the robustness of our novel linear DAG estimator.
LegendreTron: Uprising Proper Multiclass Loss Learning
Loss functions serve as the foundation of supervised learning and are often chosen prior to model development. To avoid potentially ad hoc choices of losses, statistical decision theory describes a desirable property for losses known as properness, which asserts that Bayes' rule is optimal. Recent works have sought to learn losses and models jointly. Existing methods do this by fitting an inverse canonical link function which monotonically maps R to [0,1] to estimate probabilities for binary problems. In this paper, we extend monotonicity to maps between R^{C-1} and the projected probability simplex Delta^{C-1} by using monotonicity of gradients of convex functions. We present {\sc LegendreTron} as a novel and practical method that jointly learns proper canonical losses and probabilities for multiclass problems. Tested on a benchmark of domains with up to 1,000 classes, our experimental results show that our method consistently outperforms the natural multiclass baseline under a t-test at 99% significance on all datasets with greater than 10 classes.
Learning Optimized Risk Scores
Risk scores are simple classification models that let users make quick risk predictions by adding and subtracting a few small numbers. These models are widely used in medicine and criminal justice, but are difficult to learn from data because they need to be calibrated, sparse, use small integer coefficients, and obey application-specific operational constraints. In this paper, we present a new machine learning approach to learn risk scores. We formulate the risk score problem as a mixed integer nonlinear program, and present a cutting plane algorithm for non-convex settings to efficiently recover its optimal solution. We improve our algorithm with specialized techniques to generate feasible solutions, narrow the optimality gap, and reduce data-related computation. Our approach can fit risk scores in a way that scales linearly in the number of samples, provides a certificate of optimality, and obeys real-world constraints without parameter tuning or post-processing. We benchmark the performance benefits of this approach through an extensive set of numerical experiments, comparing to risk scores built using heuristic approaches. We also discuss its practical benefits through a real-world application where we build a customized risk score for ICU seizure prediction in collaboration with the Massachusetts General Hospital.
Near-Optimal Solutions of Constrained Learning Problems
With the widespread adoption of machine learning systems, the need to curtail their behavior has become increasingly apparent. This is evidenced by recent advancements towards developing models that satisfy robustness, safety, and fairness requirements. These requirements can be imposed (with generalization guarantees) by formulating constrained learning problems that can then be tackled by dual ascent algorithms. Yet, though these algorithms converge in objective value, even in non-convex settings, they cannot guarantee that their outcome is feasible. Doing so requires randomizing over all iterates, which is impractical in virtually any modern applications. Still, final iterates have been observed to perform well in practice. In this work, we address this gap between theory and practice by characterizing the constraint violation of Lagrangian minimizers associated with optimal dual variables, despite lack of convexity. To do this, we leverage the fact that non-convex, finite-dimensional constrained learning problems can be seen as parametrizations of convex, functional problems. Our results show that rich parametrizations effectively mitigate the issue of feasibility in dual methods, shedding light on prior empirical successes of dual learning. We illustrate our findings in fair learning tasks.
Convex Optimization: Algorithms and Complexity
This monograph presents the main complexity theorems in convex optimization and their corresponding algorithms. Starting from the fundamental theory of black-box optimization, the material progresses towards recent advances in structural optimization and stochastic optimization. Our presentation of black-box optimization, strongly influenced by Nesterov's seminal book and Nemirovski's lecture notes, includes the analysis of cutting plane methods, as well as (accelerated) gradient descent schemes. We also pay special attention to non-Euclidean settings (relevant algorithms include Frank-Wolfe, mirror descent, and dual averaging) and discuss their relevance in machine learning. We provide a gentle introduction to structural optimization with FISTA (to optimize a sum of a smooth and a simple non-smooth term), saddle-point mirror prox (Nemirovski's alternative to Nesterov's smoothing), and a concise description of interior point methods. In stochastic optimization we discuss stochastic gradient descent, mini-batches, random coordinate descent, and sublinear algorithms. We also briefly touch upon convex relaxation of combinatorial problems and the use of randomness to round solutions, as well as random walks based methods.
Handbook of Convergence Theorems for (Stochastic) Gradient Methods
This is a handbook of simple proofs of the convergence of gradient and stochastic gradient descent type methods. We consider functions that are Lipschitz, smooth, convex, strongly convex, and/or Polyak-{\L}ojasiewicz functions. Our focus is on ``good proofs'' that are also simple. Each section can be consulted separately. We start with proofs of gradient descent, then on stochastic variants, including minibatching and momentum. Then move on to nonsmooth problems with the subgradient method, the proximal gradient descent and their stochastic variants. Our focus is on global convergence rates and complexity rates. Some slightly less common proofs found here include that of SGD (Stochastic gradient descent) with a proximal step, with momentum, and with mini-batching without replacement.
Optimally Weighted Ensembles of Regression Models: Exact Weight Optimization and Applications
Automated model selection is often proposed to users to choose which machine learning model (or method) to apply to a given regression task. In this paper, we show that combining different regression models can yield better results than selecting a single ('best') regression model, and outline an efficient method that obtains optimally weighted convex linear combination from a heterogeneous set of regression models. More specifically, in this paper, a heuristic weight optimization, used in a preceding conference paper, is replaced by an exact optimization algorithm using convex quadratic programming. We prove convexity of the quadratic programming formulation for the straightforward formulation and for a formulation with weighted data points. The novel weight optimization is not only (more) exact but also more efficient. The methods we develop in this paper are implemented and made available via github-open source. They can be executed on commonly available hardware and offer a transparent and easy to interpret interface. The results indicate that the approach outperforms model selection methods on a range of data sets, including data sets with mixed variable type from drug discovery applications.
Optimal Stochastic Non-smooth Non-convex Optimization through Online-to-Non-convex Conversion
We present new algorithms for optimizing non-smooth, non-convex stochastic objectives based on a novel analysis technique. This improves the current best-known complexity for finding a (delta,epsilon)-stationary point from O(epsilon^{-4}delta^{-1}) stochastic gradient queries to O(epsilon^{-3}delta^{-1}), which we also show to be optimal. Our primary technique is a reduction from non-smooth non-convex optimization to online learning, after which our results follow from standard regret bounds in online learning. For deterministic and second-order smooth objectives, applying more advanced optimistic online learning techniques enables a new complexity of O(epsilon^{-1.5}delta^{-0.5}). Our techniques also recover all optimal or best-known results for finding epsilon stationary points of smooth or second-order smooth objectives in both stochastic and deterministic settings.
Closed-Form Diffusion Models
Score-based generative models (SGMs) sample from a target distribution by iteratively transforming noise using the score function of the perturbed target. For any finite training set, this score function can be evaluated in closed form, but the resulting SGM memorizes its training data and does not generate novel samples. In practice, one approximates the score by training a neural network via score-matching. The error in this approximation promotes generalization, but neural SGMs are costly to train and sample, and the effective regularization this error provides is not well-understood theoretically. In this work, we instead explicitly smooth the closed-form score to obtain an SGM that generates novel samples without training. We analyze our model and propose an efficient nearest-neighbor-based estimator of its score function. Using this estimator, our method achieves competitive sampling times while running on consumer-grade CPUs.
Simple steps are all you need: Frank-Wolfe and generalized self-concordant functions
Generalized self-concordance is a key property present in the objective function of many important learning problems. We establish the convergence rate of a simple Frank-Wolfe variant that uses the open-loop step size strategy gamma_t = 2/(t+2), obtaining a O(1/t) convergence rate for this class of functions in terms of primal gap and Frank-Wolfe gap, where t is the iteration count. This avoids the use of second-order information or the need to estimate local smoothness parameters of previous work. We also show improved convergence rates for various common cases, e.g., when the feasible region under consideration is uniformly convex or polyhedral.
Development and Comparison of Scoring Functions in Curriculum Learning
Curriculum Learning is the presentation of samples to the machine learning model in a meaningful order instead of a random order. The main challenge of Curriculum Learning is determining how to rank these samples. The ranking of the samples is expressed by the scoring function. In this study, scoring functions were compared using data set features, using the model to be trained, and using another model and their ensemble versions. Experiments were performed for 4 images and 4 text datasets. No significant differences were found between scoring functions for text datasets, but significant improvements were obtained in scoring functions created using transfer learning compared to classical model training and other scoring functions for image datasets. It shows that different new scoring functions are waiting to be found for text classification tasks.
Combinatorial Neural Bandits
We consider a contextual combinatorial bandit problem where in each round a learning agent selects a subset of arms and receives feedback on the selected arms according to their scores. The score of an arm is an unknown function of the arm's feature. Approximating this unknown score function with deep neural networks, we propose algorithms: Combinatorial Neural UCB (CN-UCB) and Combinatorial Neural Thompson Sampling (CN-TS). We prove that CN-UCB achieves mathcal{O}(d T) or mathcal{O}(tilde{d T K}) regret, where d is the effective dimension of a neural tangent kernel matrix, K is the size of a subset of arms, and T is the time horizon. For CN-TS, we adapt an optimistic sampling technique to ensure the optimism of the sampled combinatorial action, achieving a worst-case (frequentist) regret of mathcal{O}(d TK). To the best of our knowledge, these are the first combinatorial neural bandit algorithms with regret performance guarantees. In particular, CN-TS is the first Thompson sampling algorithm with the worst-case regret guarantees for the general contextual combinatorial bandit problem. The numerical experiments demonstrate the superior performances of our proposed algorithms.
Exact Inference in High-order Structured Prediction
In this paper, we study the problem of inference in high-order structured prediction tasks. In the context of Markov random fields, the goal of a high-order inference task is to maximize a score function on the space of labels, and the score function can be decomposed into sum of unary and high-order potentials. We apply a generative model approach to study the problem of high-order inference, and provide a two-stage convex optimization algorithm for exact label recovery. We also provide a new class of hypergraph structural properties related to hyperedge expansion that drives the success in general high-order inference problems. Finally, we connect the performance of our algorithm and the hyperedge expansion property using a novel hypergraph Cheeger-type inequality.
Coordinate Descent Methods for Fractional Minimization
We consider a class of structured fractional minimization problems, in which the numerator part of the objective is the sum of a differentiable convex function and a convex non-smooth function, while the denominator part is a convex or concave function. This problem is difficult to solve since it is non-convex. By exploiting the structure of the problem, we propose two Coordinate Descent (CD) methods for solving this problem. The proposed methods iteratively solve a one-dimensional subproblem globally, and they are guaranteed to converge to coordinate-wise stationary points. In the case of a convex denominator, under a weak locally bounded non-convexity condition, we prove that the optimality of coordinate-wise stationary point is stronger than that of the standard critical point and directional point. Under additional suitable conditions, CD methods converge Q-linearly to coordinate-wise stationary points. In the case of a concave denominator, we show that any critical point is a global minimum, and CD methods converge to the global minimum with a sublinear convergence rate. We demonstrate the applicability of the proposed methods to some machine learning and signal processing models. Our experiments on real-world data have shown that our method significantly and consistently outperforms existing methods in terms of accuracy.
Stochastic model-based minimization of weakly convex functions
We consider a family of algorithms that successively sample and minimize simple stochastic models of the objective function. We show that under reasonable conditions on approximation quality and regularity of the models, any such algorithm drives a natural stationarity measure to zero at the rate O(k^{-1/4}). As a consequence, we obtain the first complexity guarantees for the stochastic proximal point, proximal subgradient, and regularized Gauss-Newton methods for minimizing compositions of convex functions with smooth maps. The guiding principle, underlying the complexity guarantees, is that all algorithms under consideration can be interpreted as approximate descent methods on an implicit smoothing of the problem, given by the Moreau envelope. Specializing to classical circumstances, we obtain the long-sought convergence rate of the stochastic projected gradient method, without batching, for minimizing a smooth function on a closed convex set.
Improved Analysis of Score-based Generative Modeling: User-Friendly Bounds under Minimal Smoothness Assumptions
We give an improved theoretical analysis of score-based generative modeling. Under a score estimate with small L^2 error (averaged across timesteps), we provide efficient convergence guarantees for any data distribution with second-order moment, by either employing early stopping or assuming smoothness condition on the score function of the data distribution. Our result does not rely on any log-concavity or functional inequality assumption and has a logarithmic dependence on the smoothness. In particular, we show that under only a finite second moment condition, approximating the following in reverse KL divergence in epsilon-accuracy can be done in tilde Oleft(d log (1/delta){epsilon}right) steps: 1) the variance-delta Gaussian perturbation of any data distribution; 2) data distributions with 1/delta-smooth score functions. Our analysis also provides a quantitative comparison between different discrete approximations and may guide the choice of discretization points in practice.
Variance Reduced Halpern Iteration for Finite-Sum Monotone Inclusions
Machine learning approaches relying on such criteria as adversarial robustness or multi-agent settings have raised the need for solving game-theoretic equilibrium problems. Of particular relevance to these applications are methods targeting finite-sum structure, which generically arises in empirical variants of learning problems in these contexts. Further, methods with computable approximation errors are highly desirable, as they provide verifiable exit criteria. Motivated by these applications, we study finite-sum monotone inclusion problems, which model broad classes of equilibrium problems. Our main contributions are variants of the classical Halpern iteration that employ variance reduction to obtain improved complexity guarantees in which n component operators in the finite sum are ``on average'' either cocoercive or Lipschitz continuous and monotone, with parameter L. The resulting oracle complexity of our methods, which provide guarantees for the last iterate and for a (computable) operator norm residual, is mathcal{O}( n + nLvarepsilon^{-1}), which improves upon existing methods by a factor up to n. This constitutes the first variance reduction-type result for general finite-sum monotone inclusions and for more specific problems such as convex-concave optimization when operator norm residual is the optimality measure. We further argue that, up to poly-logarithmic factors, this complexity is unimprovable in the monotone Lipschitz setting; i.e., the provided result is near-optimal.
Efficient displacement convex optimization with particle gradient descent
Particle gradient descent, which uses particles to represent a probability measure and performs gradient descent on particles in parallel, is widely used to optimize functions of probability measures. This paper considers particle gradient descent with a finite number of particles and establishes its theoretical guarantees to optimize functions that are displacement convex in measures. Concretely, for Lipschitz displacement convex functions defined on probability over R^d, we prove that O(1/epsilon^2) particles and O(d/epsilon^4) computations are sufficient to find the epsilon-optimal solutions. We further provide improved complexity bounds for optimizing smooth displacement convex functions. We demonstrate the application of our results for function approximation with specific neural architectures with two-dimensional inputs.
Optimizing NOTEARS Objectives via Topological Swaps
Recently, an intriguing class of non-convex optimization problems has emerged in the context of learning directed acyclic graphs (DAGs). These problems involve minimizing a given loss or score function, subject to a non-convex continuous constraint that penalizes the presence of cycles in a graph. In this work, we delve into the optimization challenges associated with this class of non-convex programs. To address these challenges, we propose a bi-level algorithm that leverages the non-convex constraint in a novel way. The outer level of the algorithm optimizes over topological orders by iteratively swapping pairs of nodes within the topological order of a DAG. A key innovation of our approach is the development of an effective method for generating a set of candidate swapping pairs for each iteration. At the inner level, given a topological order, we utilize off-the-shelf solvers that can handle linear constraints. The key advantage of our proposed algorithm is that it is guaranteed to find a local minimum or a KKT point under weaker conditions compared to previous work and finds solutions with lower scores. Extensive experiments demonstrate that our method outperforms state-of-the-art approaches in terms of achieving a better score. Additionally, our method can also be used as a post-processing algorithm to significantly improve the score of other algorithms. Code implementing the proposed method is available at https://github.com/duntrain/topo.
Maximum Optimality Margin: A Unified Approach for Contextual Linear Programming and Inverse Linear Programming
In this paper, we study the predict-then-optimize problem where the output of a machine learning prediction task is used as the input of some downstream optimization problem, say, the objective coefficient vector of a linear program. The problem is also known as predictive analytics or contextual linear programming. The existing approaches largely suffer from either (i) optimization intractability (a non-convex objective function)/statistical inefficiency (a suboptimal generalization bound) or (ii) requiring strong condition(s) such as no constraint or loss calibration. We develop a new approach to the problem called maximum optimality margin which designs the machine learning loss function by the optimality condition of the downstream optimization. The max-margin formulation enjoys both computational efficiency and good theoretical properties for the learning procedure. More importantly, our new approach only needs the observations of the optimal solution in the training data rather than the objective function, which makes it a new and natural approach to the inverse linear programming problem under both contextual and context-free settings; we also analyze the proposed method under both offline and online settings, and demonstrate its performance using numerical experiments.
Omnipredictors for Constrained Optimization
The notion of omnipredictors (Gopalan, Kalai, Reingold, Sharan and Wieder ITCS 2021), suggested a new paradigm for loss minimization. Rather than learning a predictor based on a known loss function, omnipredictors can easily be post-processed to minimize any one of a rich family of loss functions compared with the loss of hypotheses in a class mathcal C. It has been shown that such omnipredictors exist and are implied (for all convex and Lipschitz loss functions) by the notion of multicalibration from the algorithmic fairness literature. In this paper, we introduce omnipredictors for constrained optimization and study their complexity and implications. The notion that we introduce allows the learner to be unaware of the loss function that will be later assigned as well as the constraints that will be later imposed, as long as the subpopulations that are used to define these constraints are known. We show how to obtain omnipredictors for constrained optimization problems, relying on appropriate variants of multicalibration. We also investigate the implications of this notion when the constraints used are so-called group fairness notions.
Gradient-Normalized Smoothness for Optimization with Approximate Hessians
In this work, we develop new optimization algorithms that use approximate second-order information combined with the gradient regularization technique to achieve fast global convergence rates for both convex and non-convex objectives. The key innovation of our analysis is a novel notion called Gradient-Normalized Smoothness, which characterizes the maximum radius of a ball around the current point that yields a good relative approximation of the gradient field. Our theory establishes a natural intrinsic connection between Hessian approximation and the linearization of the gradient. Importantly, Gradient-Normalized Smoothness does not depend on the specific problem class of the objective functions, while effectively translating local information about the gradient field and Hessian approximation into the global behavior of the method. This new concept equips approximate second-order algorithms with universal global convergence guarantees, recovering state-of-the-art rates for functions with H\"older-continuous Hessians and third derivatives, quasi-self-concordant functions, as well as smooth classes in first-order optimization. These rates are achieved automatically and extend to broader classes, such as generalized self-concordant functions. We demonstrate direct applications of our results for global linear rates in logistic regression and softmax problems with approximate Hessians, as well as in non-convex optimization using Fisher and Gauss-Newton approximations.
Expressivity of ReLU-Networks under Convex Relaxations
Convex relaxations are a key component of training and certifying provably safe neural networks. However, despite substantial progress, a wide and poorly understood accuracy gap to standard networks remains, raising the question of whether this is due to fundamental limitations of convex relaxations. Initial work investigating this question focused on the simple and widely used IBP relaxation. It revealed that some univariate, convex, continuous piecewise linear (CPWL) functions cannot be encoded by any ReLU network such that its IBP-analysis is precise. To explore whether this limitation is shared by more advanced convex relaxations, we conduct the first in-depth study on the expressive power of ReLU networks across all commonly used convex relaxations. We show that: (i) more advanced relaxations allow a larger class of univariate functions to be expressed as precisely analyzable ReLU networks, (ii) more precise relaxations can allow exponentially larger solution spaces of ReLU networks encoding the same functions, and (iii) even using the most precise single-neuron relaxations, it is impossible to construct precisely analyzable ReLU networks that express multivariate, convex, monotone CPWL functions.
Input Convex Gradient Networks
The gradients of convex functions are expressive models of non-trivial vector fields. For example, Brenier's theorem yields that the optimal transport map between any two measures on Euclidean space under the squared distance is realized as a convex gradient, which is a key insight used in recent generative flow models. In this paper, we study how to model convex gradients by integrating a Jacobian-vector product parameterized by a neural network, which we call the Input Convex Gradient Network (ICGN). We theoretically study ICGNs and compare them to taking the gradient of an Input-Convex Neural Network (ICNN), empirically demonstrating that a single layer ICGN can fit a toy example better than a single layer ICNN. Lastly, we explore extensions to deeper networks and connections to constructions from Riemannian geometry.
Damped Newton Method with Near-Optimal Global Oleft(k^{-3} right) Convergence Rate
This paper investigates the global convergence of stepsized Newton methods for convex functions. We propose several simple stepsize schedules with fast global convergence guarantees, up to O (k^{-3}), nearly matching lower complexity bounds Omega (k^{-3.5}) of second-order methods. For cases with multiple plausible smoothness parameterizations or an unknown smoothness constant, we introduce a stepsize backtracking procedure that ensures convergence as if the optimal smoothness parameters were known.
Optimal Sets and Solution Paths of ReLU Networks
We develop an analytical framework to characterize the set of optimal ReLU neural networks by reformulating the non-convex training problem as a convex program. We show that the global optima of the convex parameterization are given by a polyhedral set and then extend this characterization to the optimal set of the non-convex training objective. Since all stationary points of the ReLU training problem can be represented as optima of sub-sampled convex programs, our work provides a general expression for all critical points of the non-convex objective. We then leverage our results to provide an optimal pruning algorithm for computing minimal networks, establish conditions for the regularization path of ReLU networks to be continuous, and develop sensitivity results for minimal ReLU networks.
Sampling Multimodal Distributions with the Vanilla Score: Benefits of Data-Based Initialization
There is a long history, as well as a recent explosion of interest, in statistical and generative modeling approaches based on score functions -- derivatives of the log-likelihood of a distribution. In seminal works, Hyv\"arinen proposed vanilla score matching as a way to learn distributions from data by computing an estimate of the score function of the underlying ground truth, and established connections between this method and established techniques like Contrastive Divergence and Pseudolikelihood estimation. It is by now well-known that vanilla score matching has significant difficulties learning multimodal distributions. Although there are various ways to overcome this difficulty, the following question has remained unanswered -- is there a natural way to sample multimodal distributions using just the vanilla score? Inspired by a long line of related experimental works, we prove that the Langevin diffusion with early stopping, initialized at the empirical distribution, and run on a score function estimated from data successfully generates natural multimodal distributions (mixtures of log-concave distributions).
An analytical framework for the Levine hats problem: new strategies, bounds and generalizations
We study the Levine hat problem, a classic combinatorial puzzle introduced by Lionel Levine in 2010. This problem involves a game in which n geq 2 players, each seeing an infinite stack of hats on each of their teammates' heads but not on their own, must simultaneously guess the index of a black hat on their own stack. If one of the players fails to do so, the team loses collectively. The players must therefore come up with a good strategy before the game starts. While the optimal winning probability V_{n} remains unknown even for n=2, we make three key advances. First, we develop a novel geometric framework for representing strategies through measurable functions, providing a new expression of V_{n} and a unified treatment of the game for finite and for infinite stacks via integral formulations. Secondly, we construct a new strategy K_{5} that reaches the conjectured optimal probability of victory : 0.35. We also show that K_{5} is part of a larger class of strategies that allow us to improve current bounds and resolve conjectured inequalities. Finally, we introduce and entirely solve a continuous generalization of the problem, demonstrating that extending to uncountable hat stacks increases the optimal winning probability to exactly 1/2. This generalization naturally leads to a broader and smoother strategic framework, within which we also describe how to compute optimal responses to a range of strategies.
Target-based Surrogates for Stochastic Optimization
We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a target space (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the SSO algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for SSO when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of SSO.
Tropical Attention: Neural Algorithmic Reasoning for Combinatorial Algorithms
Dynamic programming (DP) algorithms for combinatorial optimization problems work with taking maximization, minimization, and classical addition in their recursion algorithms. The associated value functions correspond to convex polyhedra in the max plus semiring. Existing Neural Algorithmic Reasoning models, however, rely on softmax-normalized dot-product attention where the smooth exponential weighting blurs these sharp polyhedral structures and collapses when evaluated on out-of-distribution (OOD) settings. We introduce Tropical attention, a novel attention function that operates natively in the max-plus semiring of tropical geometry. We prove that Tropical attention can approximate tropical circuits of DP-type combinatorial algorithms. We then propose that using Tropical transformers enhances empirical OOD performance in both length generalization and value generalization, on algorithmic reasoning tasks, surpassing softmax baselines while remaining stable under adversarial attacks. We also present adversarial-attack generalization as a third axis for Neural Algorithmic Reasoning benchmarking. Our results demonstrate that Tropical attention restores the sharp, scale-invariant reasoning absent from softmax.
Near-Optimal Quantum Algorithm for Minimizing the Maximal Loss
The problem of minimizing the maximum of N convex, Lipschitz functions plays significant roles in optimization and machine learning. It has a series of results, with the most recent one requiring O(Nepsilon^{-2/3} + epsilon^{-8/3}) queries to a first-order oracle to compute an epsilon-suboptimal point. On the other hand, quantum algorithms for optimization are rapidly advancing with speedups shown on many important optimization problems. In this paper, we conduct a systematic study for quantum algorithms and lower bounds for minimizing the maximum of N convex, Lipschitz functions. On one hand, we develop quantum algorithms with an improved complexity bound of O(Nepsilon^{-5/3} + epsilon^{-8/3}). On the other hand, we prove that quantum algorithms must take Omega(Nepsilon^{-2/3}) queries to a first order quantum oracle, showing that our dependence on N is optimal up to poly-logarithmic factors.
AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods
We present AI-SARAH, a practical variant of SARAH. As a variant of SARAH, this algorithm employs the stochastic recursive gradient yet adjusts step-size based on local geometry. AI-SARAH implicitly computes step-size and efficiently estimates local Lipschitz smoothness of stochastic functions. It is fully adaptive, tune-free, straightforward to implement, and computationally efficient. We provide technical insight and intuitive illustrations on its design and convergence. We conduct extensive empirical analysis and demonstrate its strong performance compared with its classical counterparts and other state-of-the-art first-order methods in solving convex machine learning problems.
Recovery Bounds on Class-Based Optimal Transport: A Sum-of-Norms Regularization Framework
We develop a novel theoretical framework for understating OT schemes respecting a class structure. For this purpose, we propose a convex OT program with a sum-of-norms regularization term, which provably recovers the underlying class structure under geometric assumptions. Furthermore, we derive an accelerated proximal algorithm with a closed-form projection and proximal operator scheme, thereby affording a more scalable algorithm for computing optimal transport plans. We provide a novel argument for the uniqueness of the optimum even in the absence of strong convexity. Our experiments show that the new regularizer not only results in a better preservation of the class structure in the data but also yields additional robustness to the data geometry, compared to previous regularizers.
Supersparse Linear Integer Models for Optimized Medical Scoring Systems
Scoring systems are linear classification models that only require users to add, subtract and multiply a few small numbers in order to make a prediction. These models are in widespread use by the medical community, but are difficult to learn from data because they need to be accurate and sparse, have coprime integer coefficients, and satisfy multiple operational constraints. We present a new method for creating data-driven scoring systems called a Supersparse Linear Integer Model (SLIM). SLIM scoring systems are built by solving an integer program that directly encodes measures of accuracy (the 0-1 loss) and sparsity (the ell_0-seminorm) while restricting coefficients to coprime integers. SLIM can seamlessly incorporate a wide range of operational constraints related to accuracy and sparsity, and can produce highly tailored models without parameter tuning. We provide bounds on the testing and training accuracy of SLIM scoring systems, and present a new data reduction technique that can improve scalability by eliminating a portion of the training data beforehand. Our paper includes results from a collaboration with the Massachusetts General Hospital Sleep Laboratory, where SLIM was used to create a highly tailored scoring system for sleep apnea screening
Approximating Nash Equilibria in Normal-Form Games via Stochastic Optimization
We propose the first loss function for approximate Nash equilibria of normal-form games that is amenable to unbiased Monte Carlo estimation. This construction allows us to deploy standard non-convex stochastic optimization techniques for approximating Nash equilibria, resulting in novel algorithms with provable guarantees. We complement our theoretical analysis with experiments demonstrating that stochastic gradient descent can outperform previous state-of-the-art approaches.
On User-Level Private Convex Optimization
We introduce a new mechanism for stochastic convex optimization (SCO) with user-level differential privacy guarantees. The convergence rates of this mechanism are similar to those in the prior work of Levy et al. (2021); Narayanan et al. (2022), but with two important improvements. Our mechanism does not require any smoothness assumptions on the loss. Furthermore, our bounds are also the first where the minimum number of users needed for user-level privacy has no dependence on the dimension and only a logarithmic dependence on the desired excess error. The main idea underlying the new mechanism is to show that the optimizers of strongly convex losses have low local deletion sensitivity, along with an output perturbation method for functions with low local deletion sensitivity, which could be of independent interest.
A Bregman firmly nonexpansive proximal operator for baryconvex optimization
We present a generalization of the proximal operator defined through a convex combination of convex objectives, where the coefficients are updated in a minimax fashion. We prove that this new operator is Bregman firmly nonexpansive with respect to a Bregman divergence that combines Euclidean and information geometries.
Doubly Adaptive Scaled Algorithm for Machine Learning Using Second-Order Information
We present a novel adaptive optimization algorithm for large-scale machine learning problems. Equipped with a low-cost estimate of local curvature and Lipschitz smoothness, our method dynamically adapts the search direction and step-size. The search direction contains gradient information preconditioned by a well-scaled diagonal preconditioning matrix that captures the local curvature information. Our methodology does not require the tedious task of learning rate tuning, as the learning rate is updated automatically without adding an extra hyperparameter. We provide convergence guarantees on a comprehensive collection of optimization problems, including convex, strongly convex, and nonconvex problems, in both deterministic and stochastic regimes. We also conduct an extensive empirical evaluation on standard machine learning problems, justifying our algorithm's versatility and demonstrating its strong performance compared to other start-of-the-art first-order and second-order methods.
Practical Convex Formulation of Robust One-hidden-layer Neural Network Training
Recent work has shown that the training of a one-hidden-layer, scalar-output fully-connected ReLU neural network can be reformulated as a finite-dimensional convex program. Unfortunately, the scale of such a convex program grows exponentially in data size. In this work, we prove that a stochastic procedure with a linear complexity well approximates the exact formulation. Moreover, we derive a convex optimization approach to efficiently solve the "adversarial training" problem, which trains neural networks that are robust to adversarial input perturbations. Our method can be applied to binary classification and regression, and provides an alternative to the current adversarial training methods, such as Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD). We demonstrate in experiments that the proposed method achieves a noticeably better adversarial robustness and performance than the existing methods.
A New Class of Scaling Matrices for Scaled Trust Region Algorithms
A new class of affine scaling matrices for the interior point Newton-type methods is considered to solve the nonlinear systems with simple bounds. We review the essential properties of a scaling matrix and consider several well-known scaling matrices proposed in the literature. We define a new scaling matrix that is the convex combination of these matrices. The proposed scaling matrix inherits those interesting properties of the individual matrices and satisfies additional desired requirements. The numerical experiments demonstrate the superiority of the new scaling matrix in solving several important test problems.
Approximating the Convex Hull via Metric Space Magnitude
Magnitude of a finite metric space and the related notion of magnitude functions on metric spaces is an active area of research in algebraic topology. Magnitude originally arose in the context of biology, where it represents the number of effective species in an environment; when applied to a one-parameter family of metric spaces tX with scale parameter t, the magnitude captures much of the underlying geometry of the space. Prior work has mostly focussed on properties of magnitude in a global sense; in this paper we restrict the sets to finite subsets of Euclidean space and investigate its individual components. We give an explicit formula for the corrected inclusion-exclusion principle, and define a quantity associated with each point, called the moment which gives an intrinsic ordering to the points. We exploit this in order to form an algorithm which approximates the convex hull.
STARC: A General Framework For Quantifying Differences Between Reward Functions
In order to solve a task using reinforcement learning, it is necessary to first formalise the goal of that task as a reward function. However, for many real-world tasks, it is very difficult to manually specify a reward function that never incentivises undesirable behaviour. As a result, it is increasingly popular to use reward learning algorithms, which attempt to learn a reward function from data. However, the theoretical foundations of reward learning are not yet well-developed. In particular, it is typically not known when a given reward learning algorithm with high probability will learn a reward function that is safe to optimise. This means that reward learning algorithms generally must be evaluated empirically, which is expensive, and that their failure modes are difficult to anticipate in advance. One of the roadblocks to deriving better theoretical guarantees is the lack of good methods for quantifying the difference between reward functions. In this paper we provide a solution to this problem, in the form of a class of pseudometrics on the space of all reward functions that we call STARC (STAndardised Reward Comparison) metrics. We show that STARC metrics induce both an upper and a lower bound on worst-case regret, which implies that our metrics are tight, and that any metric with the same properties must be bilipschitz equivalent to ours. Moreover, we also identify a number of issues with reward metrics proposed by earlier works. Finally, we evaluate our metrics empirically, to demonstrate their practical efficacy. STARC metrics can be used to make both theoretical and empirical analysis of reward learning algorithms both easier and more principled.
Approximate Stein Classes for Truncated Density Estimation
Estimating truncated density models is difficult, as these models have intractable normalising constants and hard to satisfy boundary conditions. Score matching can be adapted to solve the truncated density estimation problem, but requires a continuous weighting function which takes zero at the boundary and is positive elsewhere. Evaluation of such a weighting function (and its gradient) often requires a closed-form expression of the truncation boundary and finding a solution to a complicated optimisation problem. In this paper, we propose approximate Stein classes, which in turn leads to a relaxed Stein identity for truncated density estimation. We develop a novel discrepancy measure, truncated kernelised Stein discrepancy (TKSD), which does not require fixing a weighting function in advance, and can be evaluated using only samples on the boundary. We estimate a truncated density model by minimising the Lagrangian dual of TKSD. Finally, experiments show the accuracy of our method to be an improvement over previous works even without the explicit functional form of the boundary.
Efficient Global Optimization of Two-layer ReLU Networks: Quadratic-time Algorithms and Adversarial Training
The non-convexity of the artificial neural network (ANN) training landscape brings inherent optimization difficulties. While the traditional back-propagation stochastic gradient descent (SGD) algorithm and its variants are effective in certain cases, they can become stuck at spurious local minima and are sensitive to initializations and hyperparameters. Recent work has shown that the training of an ANN with ReLU activations can be reformulated as a convex program, bringing hope to globally optimizing interpretable ANNs. However, naively solving the convex training formulation has an exponential complexity, and even an approximation heuristic requires cubic time. In this work, we characterize the quality of this approximation and develop two efficient algorithms that train ANNs with global convergence guarantees. The first algorithm is based on the alternating direction method of multiplier (ADMM). It solves both the exact convex formulation and the approximate counterpart. Linear global convergence is achieved, and the initial several iterations often yield a solution with high prediction accuracy. When solving the approximate formulation, the per-iteration time complexity is quadratic. The second algorithm, based on the "sampled convex programs" theory, is simpler to implement. It solves unconstrained convex formulations and converges to an approximately globally optimal classifier. The non-convexity of the ANN training landscape exacerbates when adversarial training is considered. We apply the robust convex optimization theory to convex training and develop convex formulations that train ANNs robust to adversarial inputs. Our analysis explicitly focuses on one-hidden-layer fully connected ANNs, but can extend to more sophisticated architectures.
The greedy side of the LASSO: New algorithms for weighted sparse recovery via loss function-based orthogonal matching pursuit
We propose a class of greedy algorithms for weighted sparse recovery by considering new loss function-based generalizations of Orthogonal Matching Pursuit (OMP). Given a (regularized) loss function, the proposed algorithms alternate the iterative construction of the signal support via greedy index selection and a signal update based on solving a local data-fitting problem restricted to the current support. We show that greedy selection rules associated with popular weighted sparsity-promoting loss functions admit explicitly computable and simple formulas. Specifically, we consider ell^0 - and ell^1 -based versions of the weighted LASSO (Least Absolute Shrinkage and Selection Operator), the Square-Root LASSO (SR-LASSO) and the Least Absolute Deviations LASSO (LAD-LASSO). Through numerical experiments on Gaussian compressive sensing and high-dimensional function approximation, we demonstrate the effectiveness of the proposed algorithms and empirically show that they inherit desirable characteristics from the corresponding loss functions, such as SR-LASSO's noise-blind optimal parameter tuning and LAD-LASSO's fault tolerance. In doing so, our study sheds new light on the connection between greedy sparse recovery and convex relaxation.
Difference of Submodular Minimization via DC Programming
Minimizing the difference of two submodular (DS) functions is a problem that naturally occurs in various machine learning problems. Although it is well known that a DS problem can be equivalently formulated as the minimization of the difference of two convex (DC) functions, existing algorithms do not fully exploit this connection. A classical algorithm for DC problems is called the DC algorithm (DCA). We introduce variants of DCA and its complete form (CDCA) that we apply to the DC program corresponding to DS minimization. We extend existing convergence properties of DCA, and connect them to convergence properties on the DS problem. Our results on DCA match the theoretical guarantees satisfied by existing DS algorithms, while providing a more complete characterization of convergence properties. In the case of CDCA, we obtain a stronger local minimality guarantee. Our numerical results show that our proposed algorithms outperform existing baselines on two applications: speech corpus selection and feature selection.
Learning Rate Schedules in the Presence of Distribution Shift
We design learning rate schedules that minimize regret for SGD-based online learning in the presence of a changing data distribution. We fully characterize the optimal learning rate schedule for online linear regression via a novel analysis with stochastic differential equations. For general convex loss functions, we propose new learning rate schedules that are robust to distribution shift, and we give upper and lower bounds for the regret that only differ by constants. For non-convex loss functions, we define a notion of regret based on the gradient norm of the estimated models and propose a learning schedule that minimizes an upper bound on the total expected regret. Intuitively, one expects changing loss landscapes to require more exploration, and we confirm that optimal learning rate schedules typically increase in the presence of distribution shift. Finally, we provide experiments for high-dimensional regression models and neural networks to illustrate these learning rate schedules and their cumulative regret.
Competitive Gradient Optimization
We study the problem of convergence to a stationary point in zero-sum games. We propose competitive gradient optimization (CGO ), a gradient-based method that incorporates the interactions between the two players in zero-sum games for optimization updates. We provide continuous-time analysis of CGO and its convergence properties while showing that in the continuous limit, CGO predecessors degenerate to their gradient descent ascent (GDA) variants. We provide a rate of convergence to stationary points and further propose a generalized class of alpha-coherent function for which we provide convergence analysis. We show that for strictly alpha-coherent functions, our algorithm convergences to a saddle point. Moreover, we propose optimistic CGO (OCGO), an optimistic variant, for which we show convergence rate to saddle points in alpha-coherent class of functions.
Discriminative Bayesian filtering lends momentum to the stochastic Newton method for minimizing log-convex functions
To minimize the average of a set of log-convex functions, the stochastic Newton method iteratively updates its estimate using subsampled versions of the full objective's gradient and Hessian. We contextualize this optimization problem as sequential Bayesian inference on a latent state-space model with a discriminatively-specified observation process. Applying Bayesian filtering then yields a novel optimization algorithm that considers the entire history of gradients and Hessians when forming an update. We establish matrix-based conditions under which the effect of older observations diminishes over time, in a manner analogous to Polyak's heavy ball momentum. We illustrate various aspects of our approach with an example and review other relevant innovations for the stochastic Newton method.
Accelerated Parameter-Free Stochastic Optimization
We propose a method that achieves near-optimal rates for smooth stochastic convex optimization and requires essentially no prior knowledge of problem parameters. This improves on prior work which requires knowing at least the initial distance to optimality d0. Our method, U-DoG, combines UniXGrad (Kavis et al., 2019) and DoG (Ivgi et al., 2023) with novel iterate stabilization techniques. It requires only loose bounds on d0 and the noise magnitude, provides high probability guarantees under sub-Gaussian noise, and is also near-optimal in the non-smooth case. Our experiments show consistent, strong performance on convex problems and mixed results on neural network training.
Correlated Noise Provably Beats Independent Noise for Differentially Private Learning
Differentially private learning algorithms inject noise into the learning process. While the most common private learning algorithm, DP-SGD, adds independent Gaussian noise in each iteration, recent work on matrix factorization mechanisms has shown empirically that introducing correlations in the noise can greatly improve their utility. We characterize the asymptotic learning utility for any choice of the correlation function, giving precise analytical bounds for linear regression and as the solution to a convex program for general convex functions. We show, using these bounds, how correlated noise provably improves upon vanilla DP-SGD as a function of problem parameters such as the effective dimension and condition number. Moreover, our analytical expression for the near-optimal correlation function circumvents the cubic complexity of the semi-definite program used to optimize the noise correlation matrix in previous work. We validate our theory with experiments on private deep learning. Our work matches or outperforms prior work while being efficient both in terms of compute and memory.
Mirror Sinkhorn: Fast Online Optimization on Transport Polytopes
Optimal transport is an important tool in machine learning, allowing to capture geometric properties of the data through a linear program on transport polytopes. We present a single-loop optimization algorithm for minimizing general convex objectives on these domains, utilizing the principles of Sinkhorn matrix scaling and mirror descent. The proposed algorithm is robust to noise, and can be used in an online setting. We provide theoretical guarantees for convex objectives and experimental results showcasing it effectiveness on both synthetic and real-world data.
Algorithmic Stability of Heavy-Tailed SGD with General Loss Functions
Heavy-tail phenomena in stochastic gradient descent (SGD) have been reported in several empirical studies. Experimental evidence in previous works suggests a strong interplay between the heaviness of the tails and generalization behavior of SGD. To address this empirical phenomena theoretically, several works have made strong topological and statistical assumptions to link the generalization error to heavy tails. Very recently, new generalization bounds have been proven, indicating a non-monotonic relationship between the generalization error and heavy tails, which is more pertinent to the reported empirical observations. While these bounds do not require additional topological assumptions given that SGD can be modeled using a heavy-tailed stochastic differential equation (SDE), they can only apply to simple quadratic problems. In this paper, we build on this line of research and develop generalization bounds for a more general class of objective functions, which includes non-convex functions as well. Our approach is based on developing Wasserstein stability bounds for heavy-tailed SDEs and their discretizations, which we then convert to generalization bounds. Our results do not require any nontrivial assumptions; yet, they shed more light to the empirical observations, thanks to the generality of the loss functions.
ConjNorm: Tractable Density Estimation for Out-of-Distribution Detection
Post-hoc out-of-distribution (OOD) detection has garnered intensive attention in reliable machine learning. Many efforts have been dedicated to deriving score functions based on logits, distances, or rigorous data distribution assumptions to identify low-scoring OOD samples. Nevertheless, these estimate scores may fail to accurately reflect the true data density or impose impractical constraints. To provide a unified perspective on density-based score design, we propose a novel theoretical framework grounded in Bregman divergence, which extends distribution considerations to encompass an exponential family of distributions. Leveraging the conjugation constraint revealed in our theorem, we introduce a ConjNorm method, reframing density function design as a search for the optimal norm coefficient p against the given dataset. In light of the computational challenges of normalization, we devise an unbiased and analytically tractable estimator of the partition function using the Monte Carlo-based importance sampling technique. Extensive experiments across OOD detection benchmarks empirically demonstrate that our proposed ConjNorm has established a new state-of-the-art in a variety of OOD detection setups, outperforming the current best method by up to 13.25% and 28.19% (FPR95) on CIFAR-100 and ImageNet-1K, respectively.
On Penalty Methods for Nonconvex Bilevel Optimization and First-Order Stochastic Approximation
In this work, we study first-order algorithms for solving Bilevel Optimization (BO) where the objective functions are smooth but possibly nonconvex in both levels and the variables are restricted to closed convex sets. As a first step, we study the landscape of BO through the lens of penalty methods, in which the upper- and lower-level objectives are combined in a weighted sum with penalty parameter sigma > 0. In particular, we establish a strong connection between the penalty function and the hyper-objective by explicitly characterizing the conditions under which the values and derivatives of the two must be O(sigma)-close. A by-product of our analysis is the explicit formula for the gradient of hyper-objective when the lower-level problem has multiple solutions under minimal conditions, which could be of independent interest. Next, viewing the penalty formulation as O(sigma)-approximation of the original BO, we propose first-order algorithms that find an epsilon-stationary solution by optimizing the penalty formulation with sigma = O(epsilon). When the perturbed lower-level problem uniformly satisfies the small-error proximal error-bound (EB) condition, we propose a first-order algorithm that converges to an epsilon-stationary point of the penalty function, using in total O(epsilon^{-3}) and O(epsilon^{-7}) accesses to first-order (stochastic) gradient oracles when the oracle is deterministic and oracles are noisy, respectively. Under an additional assumption on stochastic oracles, we show that the algorithm can be implemented in a fully {\it single-loop} manner, i.e., with O(1) samples per iteration, and achieves the improved oracle-complexity of O(epsilon^{-3}) and O(epsilon^{-5}), respectively.
Chance-Constrained Gaussian Mixture Steering to a Terminal Gaussian Distribution
We address the problem of finite-horizon control of a discrete-time linear system, where the initial state distribution follows a Gaussian mixture model, the terminal state must follow a specified Gaussian distribution, and the state and control inputs must obey chance constraints. We show that, throughout the time horizon, the state and control distributions are fully characterized by Gaussian mixtures. We then formulate the cost, distributional terminal constraint, and affine/2-norm chance constraints on the state and control, as convex functions of the decision variables. This is leveraged to formulate the chance-constrained path planning problem as a single convex optimization problem. A numerical example demonstrates the effectiveness of the proposed method.
Extending Kernel PCA through Dualization: Sparsity, Robustness and Fast Algorithms
The goal of this paper is to revisit Kernel Principal Component Analysis (KPCA) through dualization of a difference of convex functions. This allows to naturally extend KPCA to multiple objective functions and leads to efficient gradient-based algorithms avoiding the expensive SVD of the Gram matrix. Particularly, we consider objective functions that can be written as Moreau envelopes, demonstrating how to promote robustness and sparsity within the same framework. The proposed method is evaluated on synthetic and real-world benchmarks, showing significant speedup in KPCA training time as well as highlighting the benefits in terms of robustness and sparsity.
Faster Rates of Convergence to Stationary Points in Differentially Private Optimization
We study the problem of approximating stationary points of Lipschitz and smooth functions under (varepsilon,delta)-differential privacy (DP) in both the finite-sum and stochastic settings. A point w is called an alpha-stationary point of a function F:R^drightarrowR if |nabla F(w)|leq alpha. We provide a new efficient algorithm that finds an Obig(big[sqrt{d}{nvarepsilon}big]^{2/3}big)-stationary point in the finite-sum setting, where n is the number of samples. This improves on the previous best rate of Obig(big[sqrt{d}{nvarepsilon}big]^{1/2}big). We also give a new construction that improves over the existing rates in the stochastic optimization setting, where the goal is to find approximate stationary points of the population risk. Our construction finds a Obig(1{n^{1/3}} + big[sqrt{d}{nvarepsilon}big]^{1/2}big)-stationary point of the population risk in time linear in n. Furthermore, under the additional assumption of convexity, we completely characterize the sample complexity of finding stationary points of the population risk (up to polylog factors) and show that the optimal rate on population stationarity is tilde Thetabig(1{n}+sqrt{d}{nvarepsilon}big). Finally, we show that our methods can be used to provide dimension-independent rates of Obig(1{n}+minbig(big[sqrt{rank}{nvarepsilon}big]^{2/3},1{(nvarepsilon)^{2/5}}big)big) on population stationarity for Generalized Linear Models (GLM), where rank is the rank of the design matrix, which improves upon the previous best known rate.
Contextual Bandits with Online Neural Regression
Recent works have shown a reduction from contextual bandits to online regression under a realizability assumption [Foster and Rakhlin, 2020, Foster and Krishnamurthy, 2021]. In this work, we investigate the use of neural networks for such online regression and associated Neural Contextual Bandits (NeuCBs). Using existing results for wide networks, one can readily show a {O}(T) regret for online regression with square loss, which via the reduction implies a {O}(K T^{3/4}) regret for NeuCBs. Departing from this standard approach, we first show a O(log T) regret for online regression with almost convex losses that satisfy QG (Quadratic Growth) condition, a generalization of the PL (Polyak-\L ojasiewicz) condition, and that have a unique minima. Although not directly applicable to wide networks since they do not have unique minima, we show that adding a suitable small random perturbation to the network predictions surprisingly makes the loss satisfy QG with unique minima. Based on such a perturbed prediction, we show a {O}(log T) regret for online regression with both squared loss and KL loss, and subsequently convert these respectively to mathcal{O}(KT) and mathcal{O}(KL^* + K) regret for NeuCB, where L^* is the loss of the best policy. Separately, we also show that existing regret bounds for NeuCBs are Omega(T) or assume i.i.d. contexts, unlike this work. Finally, our experimental results on various datasets demonstrate that our algorithms, especially the one based on KL loss, persistently outperform existing algorithms.
Fundamental Tradeoffs in Learning with Prior Information
We seek to understand fundamental tradeoffs between the accuracy of prior information that a learner has on a given problem and its learning performance. We introduce the notion of prioritized risk, which differs from traditional notions of minimax and Bayes risk by allowing us to study such fundamental tradeoffs in settings where reality does not necessarily conform to the learner's prior. We present a general reduction-based approach for extending classical minimax lower-bound techniques in order to lower bound the prioritized risk for statistical estimation problems. We also introduce a novel generalization of Fano's inequality (which may be of independent interest) for lower bounding the prioritized risk in more general settings involving unbounded losses. We illustrate the ability of our framework to provide insights into tradeoffs between prior information and learning performance for problems in estimation, regression, and reinforcement learning.
Continual Learning in Linear Classification on Separable Data
We analyze continual learning on a sequence of separable linear classification tasks with binary labels. We show theoretically that learning with weak regularization reduces to solving a sequential max-margin problem, corresponding to a special case of the Projection Onto Convex Sets (POCS) framework. We then develop upper bounds on the forgetting and other quantities of interest under various settings with recurring tasks, including cyclic and random orderings of tasks. We discuss several practical implications to popular training practices like regularization scheduling and weighting. We point out several theoretical differences between our continual classification setting and a recently studied continual regression setting.
Tighter Lower Bounds for Shuffling SGD: Random Permutations and Beyond
We study convergence lower bounds of without-replacement stochastic gradient descent (SGD) for solving smooth (strongly-)convex finite-sum minimization problems. Unlike most existing results focusing on final iterate lower bounds in terms of the number of components n and the number of epochs K, we seek bounds for arbitrary weighted average iterates that are tight in all factors including the condition number kappa. For SGD with Random Reshuffling, we present lower bounds that have tighter kappa dependencies than existing bounds. Our results are the first to perfectly close the gap between lower and upper bounds for weighted average iterates in both strongly-convex and convex cases. We also prove weighted average iterate lower bounds for arbitrary permutation-based SGD, which apply to all variants that carefully choose the best permutation. Our bounds improve the existing bounds in factors of n and kappa and thereby match the upper bounds shown for a recently proposed algorithm called GraB.
Score-based generative models break the curse of dimensionality in learning a family of sub-Gaussian probability distributions
While score-based generative models (SGMs) have achieved remarkable success in enormous image generation tasks, their mathematical foundations are still limited. In this paper, we analyze the approximation and generalization of SGMs in learning a family of sub-Gaussian probability distributions. We introduce a notion of complexity for probability distributions in terms of their relative density with respect to the standard Gaussian measure. We prove that if the log-relative density can be locally approximated by a neural network whose parameters can be suitably bounded, then the distribution generated by empirical score matching approximates the target distribution in total variation with a dimension-independent rate. We illustrate our theory through examples, which include certain mixtures of Gaussians. An essential ingredient of our proof is to derive a dimension-free deep neural network approximation rate for the true score function associated with the forward process, which is interesting in its own right.
Adam: A Method for Stochastic Optimization
We introduce Adam, an algorithm for first-order gradient-based optimization of stochastic objective functions, based on adaptive estimates of lower-order moments. The method is straightforward to implement, is computationally efficient, has little memory requirements, is invariant to diagonal rescaling of the gradients, and is well suited for problems that are large in terms of data and/or parameters. The method is also appropriate for non-stationary objectives and problems with very noisy and/or sparse gradients. The hyper-parameters have intuitive interpretations and typically require little tuning. Some connections to related algorithms, on which Adam was inspired, are discussed. We also analyze the theoretical convergence properties of the algorithm and provide a regret bound on the convergence rate that is comparable to the best known results under the online convex optimization framework. Empirical results demonstrate that Adam works well in practice and compares favorably to other stochastic optimization methods. Finally, we discuss AdaMax, a variant of Adam based on the infinity norm.
Levin Tree Search with Context Models
Levin Tree Search (LTS) is a search algorithm that makes use of a policy (a probability distribution over actions) and comes with a theoretical guarantee on the number of expansions before reaching a goal node, depending on the quality of the policy. This guarantee can be used as a loss function, which we call the LTS loss, to optimize neural networks representing the policy (LTS+NN). In this work we show that the neural network can be substituted with parameterized context models originating from the online compression literature (LTS+CM). We show that the LTS loss is convex under this new model, which allows for using standard convex optimization tools, and obtain convergence guarantees to the optimal parameters in an online setting for a given set of solution trajectories -- guarantees that cannot be provided for neural networks. The new LTS+CM algorithm compares favorably against LTS+NN on several benchmarks: Sokoban (Boxoban), The Witness, and the 24-Sliding Tile puzzle (STP). The difference is particularly large on STP, where LTS+NN fails to solve most of the test instances while LTS+CM solves each test instance in a fraction of a second. Furthermore, we show that LTS+CM is able to learn a policy that solves the Rubik's cube in only a few hundred expansions, which considerably improves upon previous machine learning techniques.
Convergence of Proximal Point and Extragradient-Based Methods Beyond Monotonicity: the Case of Negative Comonotonicity
Algorithms for min-max optimization and variational inequalities are often studied under monotonicity assumptions. Motivated by non-monotone machine learning applications, we follow the line of works [Diakonikolas et al., 2021, Lee and Kim, 2021, Pethick et al., 2022, B\"ohm, 2022] aiming at going beyond monotonicity by considering the weaker negative comonotonicity assumption. In particular, we provide tight complexity analyses for the Proximal Point, Extragradient, and Optimistic Gradient methods in this setup, closing some questions on their working guarantees beyond monotonicity.
Constrained Bi-Level Optimization: Proximal Lagrangian Value function Approach and Hessian-free Algorithm
This paper presents a new approach and algorithm for solving a class of constrained Bi-Level Optimization (BLO) problems in which the lower-level problem involves constraints coupling both upper-level and lower-level variables. Such problems have recently gained significant attention due to their broad applicability in machine learning. However, conventional gradient-based methods unavoidably rely on computationally intensive calculations related to the Hessian matrix. To address this challenge, we begin by devising a smooth proximal Lagrangian value function to handle the constrained lower-level problem. Utilizing this construct, we introduce a single-level reformulation for constrained BLOs that transforms the original BLO problem into an equivalent optimization problem with smooth constraints. Enabled by this reformulation, we develop a Hessian-free gradient-based algorithm-termed proximal Lagrangian Value function-based Hessian-free Bi-level Algorithm (LV-HBA)-that is straightforward to implement in a single loop manner. Consequently, LV-HBA is especially well-suited for machine learning applications. Furthermore, we offer non-asymptotic convergence analysis for LV-HBA, eliminating the need for traditional strong convexity assumptions for the lower-level problem while also being capable of accommodating non-singleton scenarios. Empirical results substantiate the algorithm's superior practical performance.
On Investigating the Conservative Property of Score-Based Generative Models
Existing Score-Based Models (SBMs) can be categorized into constrained SBMs (CSBMs) or unconstrained SBMs (USBMs) according to their parameterization approaches. CSBMs model probability density functions as Boltzmann distributions, and assign their predictions as the negative gradients of some scalar-valued energy functions. On the other hand, USBMs employ flexible architectures capable of directly estimating scores without the need to explicitly model energy functions. In this paper, we demonstrate that the architectural constraints of CSBMs may limit their modeling ability. In addition, we show that USBMs' inability to preserve the property of conservativeness may lead to degraded performance in practice. To address the above issues, we propose Quasi-Conservative Score-Based Models (QCSBMs) for keeping the advantages of both CSBMs and USBMs. Our theoretical derivations demonstrate that the training objective of QCSBMs can be efficiently integrated into the training processes by leveraging the Hutchinson's trace estimator. In addition, our experimental results on the CIFAR-10, CIFAR-100, ImageNet, and SVHN datasets validate the effectiveness of QCSBMs. Finally, we justify the advantage of QCSBMs using an example of a one-layered autoencoder.
Axioms for AI Alignment from Human Feedback
In the context of reinforcement learning from human feedback (RLHF), the reward function is generally derived from maximum likelihood estimation of a random utility model based on pairwise comparisons made by humans. The problem of learning a reward function is one of preference aggregation that, we argue, largely falls within the scope of social choice theory. From this perspective, we can evaluate different aggregation methods via established axioms, examining whether these methods meet or fail well-known standards. We demonstrate that both the Bradley-Terry-Luce Model and its broad generalizations fail to meet basic axioms. In response, we develop novel rules for learning reward functions with strong axiomatic guarantees. A key innovation from the standpoint of social choice is that our problem has a linear structure, which greatly restricts the space of feasible rules and leads to a new paradigm that we call linear social choice.
Stochastic Hessian Fitting on Lie Group
This paper studies the fitting of Hessian or its inverse with stochastic Hessian-vector products. A Hessian fitting criterion, which can be used to derive most of the commonly used methods, e.g., BFGS, Gaussian-Newton, AdaGrad, etc., is used for the analysis. Our studies reveal different convergence rates for different Hessian fitting methods, e.g., sublinear rates for gradient descent in the Euclidean space and a commonly used closed-form solution, linear rates for gradient descent on the manifold of symmetric positive definite (SPL) matrices and certain Lie groups. The Hessian fitting problem is further shown to be strongly convex under mild conditions on a specific yet general enough Lie group. To confirm our analysis, these methods are tested under different settings like noisy Hessian-vector products, time varying Hessians, and low precision arithmetic. These findings are useful for stochastic second order optimizations that rely on fast, robust and accurate Hessian estimations.
Understanding Gradient Orthogonalization for Deep Learning via Non-Euclidean Trust-Region Optimization
Optimization with matrix gradient orthogonalization has recently demonstrated impressive results in the training of deep neural networks (Jordan et al., 2024; Liu et al., 2025). In this paper, we provide a theoretical analysis of this approach. In particular, we show that the orthogonalized gradient method can be seen as a first-order trust-region optimization method, where the trust-region is defined in terms of the matrix spectral norm. Motivated by this observation, we develop the stochastic non-Euclidean trust-region gradient method with momentum, which recovers the Muon optimizer (Jordan et al., 2024) as a special case, along with normalized SGD and signSGD with momentum (Cutkosky and Mehta, 2020; Sun et al., 2023). In addition, we prove state-of-the-art convergence results for the proposed algorithm in a range of scenarios, which involve arbitrary non-Euclidean norms, constrained and composite problems, and non-convex, star-convex, first- and second-order smooth functions. Finally, our theoretical findings provide an explanation for several practical observations, including the practical superiority of Muon compared to the Orthogonal-SGDM algorithm of Tuddenham et al. (2022) and the importance of weight decay in the training of large-scale language models.
Regression Compatible Listwise Objectives for Calibrated Ranking with Binary Relevance
As Learning-to-Rank (LTR) approaches primarily seek to improve ranking quality, their output scores are not scale-calibrated by design. This fundamentally limits LTR usage in score-sensitive applications. Though a simple multi-objective approach that combines a regression and a ranking objective can effectively learn scale-calibrated scores, we argue that the two objectives are not necessarily compatible, which makes the trade-off less ideal for either of them. In this paper, we propose a practical regression compatible ranking (RCR) approach that achieves a better trade-off, where the two ranking and regression components are proved to be mutually aligned. Although the same idea applies to ranking with both binary and graded relevance, we mainly focus on binary labels in this paper. We evaluate the proposed approach on several public LTR benchmarks and show that it consistently achieves either best or competitive result in terms of both regression and ranking metrics, and significantly improves the Pareto frontiers in the context of multi-objective optimization. Furthermore, we evaluated the proposed approach on YouTube Search and found that it not only improved the ranking quality of the production pCTR model, but also brought gains to the click prediction accuracy. The proposed approach has been successfully deployed in the YouTube production system.
Quantifying Distributional Model Risk in Marginal Problems via Optimal Transport
This paper studies distributional model risk in marginal problems, where each marginal measure is assumed to lie in a Wasserstein ball centered at a fixed reference measure with a given radius. Theoretically, we establish several fundamental results including strong duality, finiteness of the proposed Wasserstein distributional model risk, and the existence of an optimizer at each radius. In addition, we show continuity of the Wasserstein distributional model risk as a function of the radius. Using strong duality, we extend the well-known Makarov bounds for the distribution function of the sum of two random variables with given marginals to Wasserstein distributionally robust Markarov bounds. Practically, we illustrate our results on four distinct applications when the sample information comes from multiple data sources and only some marginal reference measures are identified. They are: partial identification of treatment effects; externally valid treatment choice via robust welfare functions; Wasserstein distributionally robust estimation under data combination; and evaluation of the worst aggregate risk measures.
Learning Optimal Advantage from Preferences and Mistaking it for Reward
We consider algorithms for learning reward functions from human preferences over pairs of trajectory segments, as used in reinforcement learning from human feedback (RLHF). Most recent work assumes that human preferences are generated based only upon the reward accrued within those segments, or their partial return. Recent work casts doubt on the validity of this assumption, proposing an alternative preference model based upon regret. We investigate the consequences of assuming preferences are based upon partial return when they actually arise from regret. We argue that the learned function is an approximation of the optimal advantage function, A^*_r, not a reward function. We find that if a specific pitfall is addressed, this incorrect assumption is not particularly harmful, resulting in a highly shaped reward function. Nonetheless, this incorrect usage of A^*_r is less desirable than the appropriate and simpler approach of greedy maximization of A^*_r. From the perspective of the regret preference model, we also provide a clearer interpretation of fine tuning contemporary large language models with RLHF. This paper overall provides insight regarding why learning under the partial return preference model tends to work so well in practice, despite it conforming poorly to how humans give preferences.
Constrained Phi-Equilibria
The computational study of equilibria involving constraints on players' strategies has been largely neglected. However, in real-world applications, players are usually subject to constraints ruling out the feasibility of some of their strategies, such as, e.g., safety requirements and budget caps. Computational studies on constrained versions of the Nash equilibrium have lead to some results under very stringent assumptions, while finding constrained versions of the correlated equilibrium (CE) is still unexplored. In this paper, we introduce and computationally characterize constrained Phi-equilibria -- a more general notion than constrained CEs -- in normal-form games. We show that computing such equilibria is in general computationally intractable, and also that the set of the equilibria may not be convex, providing a sharp divide with unconstrained CEs. Nevertheless, we provide a polynomial-time algorithm for computing a constrained (approximate) Phi-equilibrium maximizing a given linear function, when either the number of constraints or that of players' actions is fixed. Moreover, in the special case in which a player's constraints do not depend on other players' strategies, we show that an exact, function-maximizing equilibrium can be computed in polynomial time, while one (approximate) equilibrium can be found with an efficient decentralized no-regret learning algorithm.
GD doesn't make the cut: Three ways that non-differentiability affects neural network training
This paper investigates the distinctions between gradient methods applied to non-differentiable functions (NGDMs) and classical gradient descents (GDs) designed for differentiable functions. First, we demonstrate significant differences in the convergence properties of NGDMs compared to GDs, challenging the applicability of the extensive neural network convergence literature based on L-smoothness to non-smooth neural networks. Next, we demonstrate the paradoxical nature of NGDM solutions for L_{1}-regularized problems, showing that increasing the regularization penalty leads to an increase in the L_{1} norm of optimal solutions in NGDMs. Consequently, we show that widely adopted L_{1} penalization-based techniques for network pruning do not yield expected results. Finally, we explore the Edge of Stability phenomenon, indicating its inapplicability even to Lipschitz continuous convex differentiable functions, leaving its relevance to non-convex non-differentiable neural networks inconclusive. Our analysis exposes misguided interpretations of NGDMs in widely referenced papers and texts due to an overreliance on strong smoothness assumptions, emphasizing the necessity for a nuanced understanding of foundational assumptions in the analysis of these systems.
Submodular Order Functions and Assortment Optimization
We define a new class of set functions that in addition to being monotone and subadditive, also admit a very limited form of submodularity defined over a permutation of the ground set. We refer to this permutation as a submodular order. This class of functions includes monotone submodular functions as a sub-family. To understand the importance of this structure in optimization problems we consider the problem of maximizing function value under various types of constraints. To demonstrate the modeling power of submodular order functions we show applications in two different settings. First, we apply our results to the extensively studied problem of assortment optimization. While the objectives in assortment optimization are known to be non-submodular (and non-monotone) even for simple choice models, we show that they are compatible with the notion of submodular order. Consequently, we obtain new and in some cases the first constant factor guarantee for constrained assortment optimization in fundamental choice models. As a second application of submodular order functions, we show an intriguing connection to the maximization of monotone submodular functions in the streaming model. We recover some best known guarantees for this problem as a corollary of our results.
Towards Gradient Free and Projection Free Stochastic Optimization
This paper focuses on the problem of constrained stochastic optimization. A zeroth order Frank-Wolfe algorithm is proposed, which in addition to the projection-free nature of the vanilla Frank-Wolfe algorithm makes it gradient free. Under convexity and smoothness assumption, we show that the proposed algorithm converges to the optimal objective function at a rate Oleft(1/T^{1/3}right), where T denotes the iteration count. In particular, the primal sub-optimality gap is shown to have a dimension dependence of Oleft(d^{1/3}right), which is the best known dimension dependence among all zeroth order optimization algorithms with one directional derivative per iteration. For non-convex functions, we obtain the Frank-Wolfe gap to be Oleft(d^{1/3}T^{-1/4}right). Experiments on black-box optimization setups demonstrate the efficacy of the proposed algorithm.
Transductive Few-Shot Learning: Clustering is All You Need?
We investigate a general formulation for clustering and transductive few-shot learning, which integrates prototype-based objectives, Laplacian regularization and supervision constraints from a few labeled data points. We propose a concave-convex relaxation of the problem, and derive a computationally efficient block-coordinate bound optimizer, with convergence guarantee. At each iteration,our optimizer computes independent (parallel) updates for each point-to-cluster assignment. Therefore, it could be trivially distributed for large-scale clustering and few-shot tasks. Furthermore, we provides a thorough convergence analysis based on point-to-set maps. Were port comprehensive clustering and few-shot learning experiments over various data sets, showing that our method yields competitive performances, in term of accuracy and optimization quality, while scaling up to large problems. Using standard training on the base classes, without resorting to complex meta-learning and episodic-training strategies, our approach outperforms state-of-the-art few-shot methods by significant margins, across various models, settings and data sets. Surprisingly, we found that even standard clustering procedures (e.g., K-means), which correspond to particular, non-regularized cases of our general model, already achieve competitive performances in comparison to the state-of-the-art in few-shot learning. These surprising results point to the limitations of the current few-shot benchmarks, and question the viability of a large body of convoluted few-shot learning techniques in the recent literature.
Convergence Guarantees for RMSProp and Adam in Generalized-smooth Non-convex Optimization with Affine Noise Variance
This paper provides the first tight convergence analyses for RMSProp and Adam in non-convex optimization under the most relaxed assumptions of coordinate-wise generalized smoothness and affine noise variance. We first analyze RMSProp, which is a special case of Adam with adaptive learning rates but without first-order momentum. Specifically, to solve the challenges due to dependence among adaptive update, unbounded gradient estimate and Lipschitz constant, we demonstrate that the first-order term in the descent lemma converges and its denominator is upper bounded by a function of gradient norm. Based on this result, we show that RMSProp with proper hyperparameters converges to an epsilon-stationary point with an iteration complexity of mathcal O(epsilon^{-4}). We then generalize our analysis to Adam, where the additional challenge is due to a mismatch between the gradient and first-order momentum. We develop a new upper bound on the first-order term in the descent lemma, which is also a function of the gradient norm. We show that Adam with proper hyperparameters converges to an epsilon-stationary point with an iteration complexity of mathcal O(epsilon^{-4}). Our complexity results for both RMSProp and Adam match with the complexity lower bound established in arjevani2023lower.
Faster Convergence of Stochastic Accelerated Gradient Descent under Interpolation
We prove new convergence rates for a generalized version of stochastic Nesterov acceleration under interpolation conditions. Unlike previous analyses, our approach accelerates any stochastic gradient method which makes sufficient progress in expectation. The proof, which proceeds using the estimating sequences framework, applies to both convex and strongly convex functions and is easily specialized to accelerated SGD under the strong growth condition. In this special case, our analysis reduces the dependence on the strong growth constant from rho to rho as compared to prior work. This improvement is comparable to a square-root of the condition number in the worst case and address criticism that guarantees for stochastic acceleration could be worse than those for SGD.
Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post Hoc Explanations
A critical problem in the field of post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This fragmentation of goals causes not only an inconsistent conceptual understanding of explanations but also the practical challenge of not knowing which method to use when. In this work, we begin to address these challenges by unifying eight popular post hoc explanation methods (LIME, C-LIME, KernelSHAP, Occlusion, Vanilla Gradients, Gradients x Input, SmoothGrad, and Integrated Gradients). We show that these methods all perform local function approximation of the black-box model, differing only in the neighbourhood and loss function used to perform the approximation. This unification enables us to (1) state a no free lunch theorem for explanation methods, demonstrating that no method can perform optimally across all neighbourhoods, and (2) provide a guiding principle to choose among methods based on faithfulness to the black-box model. We empirically validate these theoretical results using various real-world datasets, model classes, and prediction tasks. By bringing diverse explanation methods into a common framework, this work (1) advances the conceptual understanding of these methods, revealing their shared local function approximation objective, properties, and relation to one another, and (2) guides the use of these methods in practice, providing a principled approach to choose among methods and paving the way for the creation of new ones.
Beyond Uniform Lipschitz Condition in Differentially Private Optimization
Most prior results on differentially private stochastic gradient descent (DP-SGD) are derived under the simplistic assumption of uniform Lipschitzness, i.e., the per-sample gradients are uniformly bounded. We generalize uniform Lipschitzness by assuming that the per-sample gradients have sample-dependent upper bounds, i.e., per-sample Lipschitz constants, which themselves may be unbounded. We provide principled guidance on choosing the clip norm in DP-SGD for convex over-parameterized settings satisfying our general version of Lipschitzness when the per-sample Lipschitz constants are bounded; specifically, we recommend tuning the clip norm only till values up to the minimum per-sample Lipschitz constant. This finds application in the private training of a softmax layer on top of a deep network pre-trained on public data. We verify the efficacy of our recommendation via experiments on 8 datasets. Furthermore, we provide new convergence results for DP-SGD on convex and nonconvex functions when the Lipschitz constants are unbounded but have bounded moments, i.e., they are heavy-tailed.
Non-asymptotic oracle inequalities for the Lasso in high-dimensional mixture of experts
Mixture of experts (MoE) has a well-principled finite mixture model construction for prediction, allowing the gating network (mixture weights) to learn from the predictors (explanatory variables) together with the experts' network (mixture component densities). We investigate the estimation properties of MoEs in a high-dimensional setting, where the number of predictors is much larger than the sample size, for which the literature lacks computational and especially theoretical results. We consider the class of finite MoE models with softmax gating functions and Gaussian regression experts, and focus on the theoretical properties of their l_1-regularized estimation via the Lasso. We provide a lower bound on the regularization parameter of the Lasso penalty that ensures an l_1-oracle inequality is satisfied by the Lasso estimator according to the Kullback--Leibler loss. We further state an l_1-ball oracle inequality for the l_1-penalized maximum likelihood estimator from the model selection.
Flexible Model Aggregation for Quantile Regression
Quantile regression is a fundamental problem in statistical learning motivated by a need to quantify uncertainty in predictions, or to model a diverse population without being overly reductive. For instance, epidemiological forecasts, cost estimates, and revenue predictions all benefit from being able to quantify the range of possible values accurately. As such, many models have been developed for this problem over many years of research in statistics, machine learning, and related fields. Rather than proposing yet another (new) algorithm for quantile regression we adopt a meta viewpoint: we investigate methods for aggregating any number of conditional quantile models, in order to improve accuracy and robustness. We consider weighted ensembles where weights may vary over not only individual models, but also over quantile levels, and feature values. All of the models we consider in this paper can be fit using modern deep learning toolkits, and hence are widely accessible (from an implementation point of view) and scalable. To improve the accuracy of the predicted quantiles (or equivalently, prediction intervals), we develop tools for ensuring that quantiles remain monotonically ordered, and apply conformal calibration methods. These can be used without any modification of the original library of base models. We also review some basic theory surrounding quantile aggregation and related scoring rules, and contribute a few new results to this literature (for example, the fact that post sorting or post isotonic regression can only improve the weighted interval score). Finally, we provide an extensive suite of empirical comparisons across 34 data sets from two different benchmark repositories.
Adversarially Robust PAC Learnability of Real-Valued Functions
We study robustness to test-time adversarial attacks in the regression setting with ell_p losses and arbitrary perturbation sets. We address the question of which function classes are PAC learnable in this setting. We show that classes of finite fat-shattering dimension are learnable in both realizable and agnostic settings. Moreover, for convex function classes, they are even properly learnable. In contrast, some non-convex function classes provably require improper learning algorithms. Our main technique is based on a construction of an adversarially robust sample compression scheme of a size determined by the fat-shattering dimension. Along the way, we introduce a novel agnostic sample compression scheme for real-valued functions, which may be of independent interest.
Unconstrained Online Learning with Unbounded Losses
Algorithms for online learning typically require one or more boundedness assumptions: that the domain is bounded, that the losses are Lipschitz, or both. In this paper, we develop a new setting for online learning with unbounded domains and non-Lipschitz losses. For this setting we provide an algorithm which guarantees R_{T}(u)le tilde O(G|u|T+L|u|^{2}T) regret on any problem where the subgradients satisfy |g_{t}|le G+L|w_{t}|, and show that this bound is unimprovable without further assumptions. We leverage this algorithm to develop new saddle-point optimization algorithms that converge in duality gap in unbounded domains, even in the absence of meaningful curvature. Finally, we provide the first algorithm achieving non-trivial dynamic regret in an unbounded domain for non-Lipschitz losses, as well as a matching lower bound. The regret of our dynamic regret algorithm automatically improves to a novel L^{*} bound when the losses are smooth.
Bregman Proximal Langevin Monte Carlo via Bregman--Moreau Envelopes
We propose efficient Langevin Monte Carlo algorithms for sampling distributions with nonsmooth convex composite potentials, which is the sum of a continuously differentiable function and a possibly nonsmooth function. We devise such algorithms leveraging recent advances in convex analysis and optimization methods involving Bregman divergences, namely the Bregman--Moreau envelopes and the Bregman proximity operators, and in the Langevin Monte Carlo algorithms reminiscent of mirror descent. The proposed algorithms extend existing Langevin Monte Carlo algorithms in two aspects -- the ability to sample nonsmooth distributions with mirror descent-like algorithms, and the use of the more general Bregman--Moreau envelope in place of the Moreau envelope as a smooth approximation of the nonsmooth part of the potential. A particular case of the proposed scheme is reminiscent of the Bregman proximal gradient algorithm. The efficiency of the proposed methodology is illustrated with various sampling tasks at which existing Langevin Monte Carlo methods are known to perform poorly.
Online Information Acquisition: Hiring Multiple Agents
We investigate the mechanism design problem faced by a principal who hires multiple agents to gather and report costly information. Then, the principal exploits the information to make an informed decision. We model this problem as a game, where the principal announces a mechanism consisting in action recommendations and a payment function, a.k.a. scoring rule. Then, each agent chooses an effort level and receives partial information about an underlying state of nature based on the effort. Finally, the agents report the information (possibly non-truthfully), the principal takes a decision based on this information, and the agents are paid according to the scoring rule. While previous work focuses on single-agent problems, we consider multi-agents settings. This poses the challenge of coordinating the agents' efforts and aggregating correlated information. Indeed, we show that optimal mechanisms must correlate agents' efforts, which introduces externalities among the agents, and hence complex incentive compatibility constraints and equilibrium selection problems. First, we design a polynomial-time algorithm to find an optimal incentive compatible mechanism. Then, we study an online problem, where the principal repeatedly interacts with a group of unknown agents. We design a no-regret algorithm that provides mathcal{O}(T^{2/3}) regret with respect to an optimal mechanism, matching the state-of-the-art bound for single-agent settings.
Constrained Monotonic Neural Networks
Wider adoption of neural networks in many critical domains such as finance and healthcare is being hindered by the need to explain their predictions and to impose additional constraints on them. Monotonicity constraint is one of the most requested properties in real-world scenarios and is the focus of this paper. One of the oldest ways to construct a monotonic fully connected neural network is to constrain signs on its weights. Unfortunately, this construction does not work with popular non-saturated activation functions as it can only approximate convex functions. We show this shortcoming can be fixed by constructing two additional activation functions from a typical unsaturated monotonic activation function and employing each of them on the part of neurons. Our experiments show this approach of building monotonic neural networks has better accuracy when compared to other state-of-the-art methods, while being the simplest one in the sense of having the least number of parameters, and not requiring any modifications to the learning procedure or post-learning steps. Finally, we prove it can approximate any continuous monotone function on a compact subset of R^n.
Variational Wasserstein gradient flow
Wasserstein gradient flow has emerged as a promising approach to solve optimization problems over the space of probability distributions. A recent trend is to use the well-known JKO scheme in combination with input convex neural networks to numerically implement the proximal step. The most challenging step, in this setup, is to evaluate functions involving density explicitly, such as entropy, in terms of samples. This paper builds on the recent works with a slight but crucial difference: we propose to utilize a variational formulation of the objective function formulated as maximization over a parametric class of functions. Theoretically, the proposed variational formulation allows the construction of gradient flows directly for empirical distributions with a well-defined and meaningful objective function. Computationally, this approach replaces the computationally expensive step in existing methods, to handle objective functions involving density, with inner loop updates that only require a small batch of samples and scale well with the dimension. The performance and scalability of the proposed method are illustrated with the aid of several numerical experiments involving high-dimensional synthetic and real datasets.
High-Probability Bounds for Stochastic Optimization and Variational Inequalities: the Case of Unbounded Variance
During recent years the interest of optimization and machine learning communities in high-probability convergence of stochastic optimization methods has been growing. One of the main reasons for this is that high-probability complexity bounds are more accurate and less studied than in-expectation ones. However, SOTA high-probability non-asymptotic convergence results are derived under strong assumptions such as the boundedness of the gradient noise variance or of the objective's gradient itself. In this paper, we propose several algorithms with high-probability convergence results under less restrictive assumptions. In particular, we derive new high-probability convergence results under the assumption that the gradient/operator noise has bounded central alpha-th moment for alpha in (1,2] in the following setups: (i) smooth non-convex / Polyak-Lojasiewicz / convex / strongly convex / quasi-strongly convex minimization problems, (ii) Lipschitz / star-cocoercive and monotone / quasi-strongly monotone variational inequalities. These results justify the usage of the considered methods for solving problems that do not fit standard functional classes studied in stochastic optimization.
Distributional Preference Alignment of LLMs via Optimal Transport
Current LLM alignment techniques use pairwise human preferences at a sample level, and as such, they do not imply an alignment on the distributional level. We propose in this paper Alignment via Optimal Transport (AOT), a novel method for distributional preference alignment of LLMs. AOT aligns LLMs on unpaired preference data by making the reward distribution of the positive samples stochastically dominant in the first order on the distribution of negative samples. We introduce a convex relaxation of this first-order stochastic dominance and cast it as an optimal transport problem with a smooth and convex cost. Thanks to the one-dimensional nature of the resulting optimal transport problem and the convexity of the cost, it has a closed-form solution via sorting on empirical measures. We fine-tune LLMs with this AOT objective, which enables alignment by penalizing the violation of the stochastic dominance of the reward distribution of the positive samples on the reward distribution of the negative samples. We analyze the sample complexity of AOT by considering the dual of the OT problem and show that it converges at the parametric rate. Empirically, we show on a diverse set of alignment datasets and LLMs that AOT leads to state-of-the-art models in the 7B family of models when evaluated with Open LLM Benchmarks and AlpacaEval.
Online Matching with Stochastic Rewards: Advanced Analyses Using Configuration Linear Programs
Mehta and Panigrahi (2012) proposed Online Matching with Stochastic Rewards, which generalizes the Online Bipartite Matching problem of Karp, Vazirani, and Vazirani (1990) by associating the edges with success probabilities. This new feature captures the pay-per-click model in online advertising. Recently, Huang and Zhang (2020) studied this problem under the online primal dual framework using the Configuration Linear Program (LP), and got the best known competitive ratios of the Stochastic Balance algorithm. Their work suggests that the more expressive Configuration LP is more suitable for this problem than the Matching LP. This paper advances the theory of Configuration LP in two directions. Our technical contribution includes a characterization of the joint matching outcome of an offline vertex and all its neighbors. This characterization may be of independent interest, and is aligned with the spirit of Configuration LP. By contrast, previous analyses of Ranking generally focus on only one neighbor. Second, we designed a Stochastic Configuration LP that captures a stochastic benchmark proposed by Goyal and Udwani (2020), who used a Path-based LP. The Stochastic Configuration LP is smaller and simpler than the Path-based LP. Moreover, using the new LP we improved the competitive ratio of Stochastic Balance from 0.596 to 0.611 when the success probabilities are infinitesimal, and to 0.613 when the success probabilities are further equal.
Learning Globally Smooth Functions on Manifolds
Smoothness and low dimensional structures play central roles in improving generalization and stability in learning and statistics. This work combines techniques from semi-infinite constrained learning and manifold regularization to learn representations that are globally smooth on a manifold. To do so, it shows that under typical conditions the problem of learning a Lipschitz continuous function on a manifold is equivalent to a dynamically weighted manifold regularization problem. This observation leads to a practical algorithm based on a weighted Laplacian penalty whose weights are adapted using stochastic gradient techniques. It is shown that under mild conditions, this method estimates the Lipschitz constant of the solution, learning a globally smooth solution as a byproduct. Experiments on real world data illustrate the advantages of the proposed method relative to existing alternatives.
Generalization Analysis for Contrastive Representation Learning
Recently, contrastive learning has found impressive success in advancing the state of the art in solving various machine learning tasks. However, the existing generalization analysis is very limited or even not meaningful. In particular, the existing generalization error bounds depend linearly on the number k of negative examples while it was widely shown in practice that choosing a large k is necessary to guarantee good generalization of contrastive learning in downstream tasks. In this paper, we establish novel generalization bounds for contrastive learning which do not depend on k, up to logarithmic terms. Our analysis uses structural results on empirical covering numbers and Rademacher complexities to exploit the Lipschitz continuity of loss functions. For self-bounding Lipschitz loss functions, we further improve our results by developing optimistic bounds which imply fast rates in a low noise condition. We apply our results to learning with both linear representation and nonlinear representation by deep neural networks, for both of which we derive Rademacher complexity bounds to get improved generalization bounds.
Generalized-Smooth Nonconvex Optimization is As Efficient As Smooth Nonconvex Optimization
Various optimal gradient-based algorithms have been developed for smooth nonconvex optimization. However, many nonconvex machine learning problems do not belong to the class of smooth functions and therefore the existing algorithms are sub-optimal. Instead, these problems have been shown to satisfy certain generalized-smooth conditions, which have not been well understood in the existing literature. In this paper, we propose a notion of alpha-symmetric generalized-smoothness that extends the existing notions and covers many important functions such as high-order polynomials and exponential functions. We study the fundamental properties and establish descent lemmas for the functions in this class. Then, to solve such a large class of nonconvex problems, we design a special deterministic normalized gradient descent algorithm that achieves the optimal iteration complexity O(epsilon^{-2}), and also prove that the popular SPIDER variance reduction algorithm achieves the optimal sample complexity O(epsilon^{-3}) in the stochastic setting. Our results show that solving generalized-smooth nonconvex problems is as efficient as solving smooth nonconvex problems.
Partial Optimality in Cubic Correlation Clustering
The higher-order correlation clustering problem is an expressive model, and recently, local search heuristics have been proposed for several applications. Certifying optimality, however, is NP-hard and practically hampered already by the complexity of the problem statement. Here, we focus on establishing partial optimality conditions for the special case of complete graphs and cubic objective functions. In addition, we define and implement algorithms for testing these conditions and examine their effect numerically, on two datasets.
Conformal Risk Control
We extend conformal prediction to control the expected value of any monotone loss function. The algorithm generalizes split conformal prediction together with its coverage guarantee. Like conformal prediction, the conformal risk control procedure is tight up to an O(1/n) factor. We also introduce extensions of the idea to distribution shift, quantile risk control, multiple and adversarial risk control, and expectations of U-statistics. Worked examples from computer vision and natural language processing demonstrate the usage of our algorithm to bound the false negative rate, graph distance, and token-level F1-score.
On the saddle point problem for non-convex optimization
A central challenge to many fields of science and engineering involves minimizing non-convex error functions over continuous, high dimensional spaces. Gradient descent or quasi-Newton methods are almost ubiquitously used to perform such minimizations, and it is often thought that a main source of difficulty for the ability of these local methods to find the global minimum is the proliferation of local minima with much higher error than the global minimum. Here we argue, based on results from statistical physics, random matrix theory, and neural network theory, that a deeper and more profound difficulty originates from the proliferation of saddle points, not local minima, especially in high dimensional problems of practical interest. Such saddle points are surrounded by high error plateaus that can dramatically slow down learning, and give the illusory impression of the existence of a local minimum. Motivated by these arguments, we propose a new algorithm, the saddle-free Newton method, that can rapidly escape high dimensional saddle points, unlike gradient descent and quasi-Newton methods. We apply this algorithm to deep neural network training, and provide preliminary numerical evidence for its superior performance.
Accelerated Gradient Methods for Sparse Statistical Learning with Nonconvex Penalties
Nesterov's accelerated gradient (AG) is a popular technique to optimize objective functions comprising two components: a convex loss and a penalty function. While AG methods perform well for convex penalties, such as the LASSO, convergence issues may arise when it is applied to nonconvex penalties, such as SCAD. A recent proposal generalizes Nesterov's AG method to the nonconvex setting. The proposed algorithm requires specification of several hyperparameters for its practical application. Aside from some general conditions, there is no explicit rule for selecting the hyperparameters, and how different selection can affect convergence of the algorithm. In this article, we propose a hyperparameter setting based on the complexity upper bound to accelerate convergence, and consider the application of this nonconvex AG algorithm to high-dimensional linear and logistic sparse learning problems. We further establish the rate of convergence and present a simple and useful bound to characterize our proposed optimal damping sequence. Simulation studies show that convergence can be made, on average, considerably faster than that of the conventional proximal gradient algorithm. Our experiments also show that the proposed method generally outperforms the current state-of-the-art methods in terms of signal recovery.
What Regularized Auto-Encoders Learn from the Data Generating Distribution
What do auto-encoders learn about the underlying data generating distribution? Recent work suggests that some auto-encoder variants do a good job of capturing the local manifold structure of data. This paper clarifies some of these previous observations by showing that minimizing a particular form of regularized reconstruction error yields a reconstruction function that locally characterizes the shape of the data generating density. We show that the auto-encoder captures the score (derivative of the log-density with respect to the input). It contradicts previous interpretations of reconstruction error as an energy function. Unlike previous results, the theorems provided here are completely generic and do not depend on the parametrization of the auto-encoder: they show what the auto-encoder would tend to if given enough capacity and examples. These results are for a contractive training criterion we show to be similar to the denoising auto-encoder training criterion with small corruption noise, but with contraction applied on the whole reconstruction function rather than just encoder. Similarly to score matching, one can consider the proposed training criterion as a convenient alternative to maximum likelihood because it does not involve a partition function. Finally, we show how an approximate Metropolis-Hastings MCMC can be setup to recover samples from the estimated distribution, and this is confirmed in sampling experiments.
Fast Convex Pruning of Deep Neural Networks
We develop a fast, tractable technique called Net-Trim for simplifying a trained neural network. The method is a convex post-processing module, which prunes (sparsifies) a trained network layer by layer, while preserving the internal responses. We present a comprehensive analysis of Net-Trim from both the algorithmic and sample complexity standpoints, centered on a fast, scalable convex optimization program. Our analysis includes consistency results between the initial and retrained models before and after Net-Trim application and guarantees on the number of training samples needed to discover a network that can be expressed using a certain number of nonzero terms. Specifically, if there is a set of weights that uses at most s terms that can re-create the layer outputs from the layer inputs, we can find these weights from O(slog N/s) samples, where N is the input size. These theoretical results are similar to those for sparse regression using the Lasso, and our analysis uses some of the same recently-developed tools (namely recent results on the concentration of measure and convex analysis). Finally, we propose an algorithmic framework based on the alternating direction method of multipliers (ADMM), which allows a fast and simple implementation of Net-Trim for network pruning and compression.
Active Ranking of Experts Based on their Performances in Many Tasks
We consider the problem of ranking n experts based on their performances on d tasks. We make a monotonicity assumption stating that for each pair of experts, one outperforms the other on all tasks. We consider the sequential setting where in each round, the learner has access to noisy evaluations of actively chosen pair of expert-task, given the information available up to the actual round. Given a confidence parameter delta in (0, 1), we provide strategies allowing to recover the correct ranking of experts and develop a bound on the total number of queries made by our algorithm that hold with probability at least 1 -- delta. We show that our strategy is adaptive to the complexity of the problem (our bounds are instance dependent), and develop matching lower bounds up to a poly-logarithmic factor. Finally, we adapt our strategy to the relaxed problem of best expert identification and provide numerical simulation consistent with our theoretical results.
Discovering Preference Optimization Algorithms with and for Large Language Models
Offline preference optimization is a key method for enhancing and controlling the quality of Large Language Model (LLM) outputs. Typically, preference optimization is approached as an offline supervised learning task using manually-crafted convex loss functions. While these methods are based on theoretical insights, they are inherently constrained by human creativity, so the large search space of possible loss functions remains under explored. We address this by performing LLM-driven objective discovery to automatically discover new state-of-the-art preference optimization algorithms without (expert) human intervention. Specifically, we iteratively prompt an LLM to propose and implement new preference optimization loss functions based on previously-evaluated performance metrics. This process leads to the discovery of previously-unknown and performant preference optimization algorithms. The best performing of these we call Discovered Preference Optimization (DiscoPOP), a novel algorithm that adaptively blends logistic and exponential losses. Experiments demonstrate the state-of-the-art performance of DiscoPOP and its successful transfer to held-out tasks.
MAGIC: Near-Optimal Data Attribution for Deep Learning
The goal of predictive data attribution is to estimate how adding or removing a given set of training datapoints will affect model predictions. In convex settings, this goal is straightforward (i.e., via the infinitesimal jackknife). In large-scale (non-convex) settings, however, existing methods are far less successful -- current methods' estimates often only weakly correlate with ground truth. In this work, we present a new data attribution method (MAGIC) that combines classical methods and recent advances in metadifferentiation to (nearly) optimally estimate the effect of adding or removing training data on model predictions.
Accelerated Cyclic Coordinate Dual Averaging with Extrapolation for Composite Convex Optimization
Exploiting partial first-order information in a cyclic way is arguably the most natural strategy to obtain scalable first-order methods. However, despite their wide use in practice, cyclic schemes are far less understood from a theoretical perspective than their randomized counterparts. Motivated by a recent success in analyzing an extrapolated cyclic scheme for generalized variational inequalities, we propose an Accelerated Cyclic Coordinate Dual Averaging with Extrapolation (A-CODER) method for composite convex optimization, where the objective function can be expressed as the sum of a smooth convex function accessible via a gradient oracle and a convex, possibly nonsmooth, function accessible via a proximal oracle. We show that A-CODER attains the optimal convergence rate with improved dependence on the number of blocks compared to prior work. Furthermore, for the setting where the smooth component of the objective function is expressible in a finite sum form, we introduce a variance-reduced variant of A-CODER, VR-A-CODER, with state-of-the-art complexity guarantees. Finally, we demonstrate the effectiveness of our algorithms through numerical experiments.
Improved Active Learning via Dependent Leverage Score Sampling
We show how to obtain improved active learning methods in the agnostic (adversarial noise) setting by combining marginal leverage score sampling with non-independent sampling strategies that promote spatial coverage. In particular, we propose an easily implemented method based on the pivotal sampling algorithm, which we test on problems motivated by learning-based methods for parametric PDEs and uncertainty quantification. In comparison to independent sampling, our method reduces the number of samples needed to reach a given target accuracy by up to 50%. We support our findings with two theoretical results. First, we show that any non-independent leverage score sampling method that obeys a weak one-sided ell_{infty} independence condition (which includes pivotal sampling) can actively learn d dimensional linear functions with O(dlog d) samples, matching independent sampling. This result extends recent work on matrix Chernoff bounds under ell_{infty} independence, and may be of interest for analyzing other sampling strategies beyond pivotal sampling. Second, we show that, for the important case of polynomial regression, our pivotal method obtains an improved bound of O(d) samples.
Near-Optimal Algorithms for Private Online Optimization in the Realizable Regime
We consider online learning problems in the realizable setting, where there is a zero-loss solution, and propose new Differentially Private (DP) algorithms that obtain near-optimal regret bounds. For the problem of online prediction from experts, we design new algorithms that obtain near-optimal regret {O} big( varepsilon^{-1} log^{1.5}{d} big) where d is the number of experts. This significantly improves over the best existing regret bounds for the DP non-realizable setting which are {O} big( varepsilon^{-1} minbig{d, T^{1/3}log dbig} big). We also develop an adaptive algorithm for the small-loss setting with regret O(L^starlog d + varepsilon^{-1} log^{1.5}{d}) where L^star is the total loss of the best expert. Additionally, we consider DP online convex optimization in the realizable setting and propose an algorithm with near-optimal regret O big(varepsilon^{-1} d^{1.5} big), as well as an algorithm for the smooth case with regret O big( varepsilon^{-2/3} (dT)^{1/3} big), both significantly improving over existing bounds in the non-realizable regime.
NeuralNDCG: Direct Optimisation of a Ranking Metric via Differentiable Relaxation of Sorting
Learning to Rank (LTR) algorithms are usually evaluated using Information Retrieval metrics like Normalised Discounted Cumulative Gain (NDCG) or Mean Average Precision. As these metrics rely on sorting predicted items' scores (and thus, on items' ranks), their derivatives are either undefined or zero everywhere. This makes them unsuitable for gradient-based optimisation, which is the usual method of learning appropriate scoring functions. Commonly used LTR loss functions are only loosely related to the evaluation metrics, causing a mismatch between the optimisation objective and the evaluation criterion. In this paper, we address this mismatch by proposing NeuralNDCG, a novel differentiable approximation to NDCG. Since NDCG relies on the non-differentiable sorting operator, we obtain NeuralNDCG by relaxing that operator using NeuralSort, a differentiable approximation of sorting. As a result, we obtain a new ranking loss function which is an arbitrarily accurate approximation to the evaluation metric, thus closing the gap between the training and the evaluation of LTR models. We introduce two variants of the proposed loss function. Finally, the empirical evaluation shows that our proposed method outperforms previous work aimed at direct optimisation of NDCG and is competitive with the state-of-the-art methods.
Which Tricks are Important for Learning to Rank?
Nowadays, state-of-the-art learning-to-rank (LTR) methods are based on gradient-boosted decision trees (GBDT). The most well-known algorithm is LambdaMART that was proposed more than a decade ago. Recently, several other GBDT-based ranking algorithms were proposed. In this paper, we conduct a thorough analysis of these methods in a unified setup. In particular, we address the following questions. Is direct optimization of a smoothed ranking loss preferable over optimizing a convex surrogate? How to properly construct and smooth surrogate ranking losses? To address these questions, we compare LambdaMART with YetiRank and StochasticRank methods and their modifications. We also improve the YetiRank approach to allow for optimizing specific ranking loss functions. As a result, we gain insights into learning-to-rank approaches and obtain a new state-of-the-art algorithm.
Predictive Multiplicity in Probabilistic Classification
Machine learning models are often used to inform real world risk assessment tasks: predicting consumer default risk, predicting whether a person suffers from a serious illness, or predicting a person's risk to appear in court. Given multiple models that perform almost equally well for a prediction task, to what extent do predictions vary across these models? If predictions are relatively consistent for similar models, then the standard approach of choosing the model that optimizes a penalized loss suffices. But what if predictions vary significantly for similar models? In machine learning, this is referred to as predictive multiplicity i.e. the prevalence of conflicting predictions assigned by near-optimal competing models. In this paper, we present a framework for measuring predictive multiplicity in probabilistic classification (predicting the probability of a positive outcome). We introduce measures that capture the variation in risk estimates over the set of competing models, and develop optimization-based methods to compute these measures efficiently and reliably for convex empirical risk minimization problems. We demonstrate the incidence and prevalence of predictive multiplicity in real-world tasks. Further, we provide insight into how predictive multiplicity arises by analyzing the relationship between predictive multiplicity and data set characteristics (outliers, separability, and majority-minority structure). Our results emphasize the need to report predictive multiplicity more widely.
Tackling Prevalent Conditions in Unsupervised Combinatorial Optimization: Cardinality, Minimum, Covering, and More
Combinatorial optimization (CO) is naturally discrete, making machine learning based on differentiable optimization inapplicable. Karalias & Loukas (2020) adapted the probabilistic method to incorporate CO into differentiable optimization. Their work ignited the research on unsupervised learning for CO, composed of two main components: probabilistic objectives and derandomization. However, each component confronts unique challenges. First, deriving objectives under various conditions (e.g., cardinality constraints and minimum) is nontrivial. Second, the derandomization process is underexplored, and the existing derandomization methods are either random sampling or naive rounding. In this work, we aim to tackle prevalent (i.e., commonly involved) conditions in unsupervised CO. First, we concretize the targets for objective construction and derandomization with theoretical justification. Then, for various conditions commonly involved in different CO problems, we derive nontrivial objectives and derandomization to meet the targets. Finally, we apply the derivations to various CO problems. Via extensive experiments on synthetic and real-world graphs, we validate the correctness of our derivations and show our empirical superiority w.r.t. both optimization quality and speed.
Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces and ReLU Regression under Gaussian Marginals
We study the task of agnostically learning halfspaces under the Gaussian distribution. Specifically, given labeled examples (x,y) from an unknown distribution on R^n times { pm 1}, whose marginal distribution on x is the standard Gaussian and the labels y can be arbitrary, the goal is to output a hypothesis with 0-1 loss OPT+epsilon, where OPT is the 0-1 loss of the best-fitting halfspace. We prove a near-optimal computational hardness result for this task, under the widely believed sub-exponential time hardness of the Learning with Errors (LWE) problem. Prior hardness results are either qualitatively suboptimal or apply to restricted families of algorithms. Our techniques extend to yield near-optimal lower bounds for related problems, including ReLU regression.
Confidence Ranking for CTR Prediction
Model evolution and constant availability of data are two common phenomena in large-scale real-world machine learning applications, e.g. ads and recommendation systems. To adapt, the real-world system typically retrain with all available data and online learn with recently available data to update the models periodically with the goal of better serving performance. In this paper, we propose a novel framework, named Confidence Ranking, which designs the optimization objective as a ranking function with two different models. Our confidence ranking loss allows direct optimization of the logits output for different convex surrogate functions of metrics, e.g. AUC and Accuracy depending on the target task and dataset. Armed with our proposed methods, our experiments show that the introduction of confidence ranking loss can outperform all baselines on the CTR prediction tasks of public and industrial datasets. This framework has been deployed in the advertisement system of JD.com to serve the main traffic in the fine-rank stage.
Bilevel Optimization under Unbounded Smoothness: A New Algorithm and Convergence Analysis
Bilevel optimization is an important formulation for many machine learning problems. Current bilevel optimization algorithms assume that the gradient of the upper-level function is Lipschitz. However, recent studies reveal that certain neural networks such as recurrent neural networks (RNNs) and long-short-term memory networks (LSTMs) exhibit potential unbounded smoothness, rendering conventional bilevel optimization algorithms unsuitable. In this paper, we design a new bilevel optimization algorithm, namely BO-REP, to address this challenge. This algorithm updates the upper-level variable using normalized momentum and incorporates two novel techniques for updating the lower-level variable: initialization refinement and periodic updates. Specifically, once the upper-level variable is initialized, a subroutine is invoked to obtain a refined estimate of the corresponding optimal lower-level variable, and the lower-level variable is updated only after every specific period instead of each iteration. When the upper-level problem is nonconvex and unbounded smooth, and the lower-level problem is strongly convex, we prove that our algorithm requires mathcal{O}(1/epsilon^4) iterations to find an epsilon-stationary point in the stochastic setting, where each iteration involves calling a stochastic gradient or Hessian-vector product oracle. Notably, this result matches the state-of-the-art complexity results under the bounded smoothness setting and without mean-squared smoothness of the stochastic gradient, up to logarithmic factors. Our proof relies on novel technical lemmas for the periodically updated lower-level variable, which are of independent interest. Our experiments on hyper-representation learning, hyperparameter optimization, and data hyper-cleaning for text classification tasks demonstrate the effectiveness of our proposed algorithm.
Risk-aware Direct Preference Optimization under Nested Risk Measure
When fine-tuning pre-trained Large Language Models (LLMs) to align with human values and intentions, maximizing the estimated reward can lead to superior performance, but it also introduces potential risks due to deviations from the reference model's intended behavior. Most existing methods typically introduce KL divergence to constrain deviations between the trained model and the reference model; however, this may not be sufficient in certain applications that require tight risk control. In this paper, we introduce Risk-aware Direct Preference Optimization (Ra-DPO), a novel approach that incorporates risk-awareness by employing a class of nested risk measures. This approach formulates a constrained risk-aware advantage function maximization problem and then converts the Bradley-Terry model into a token-level representation. The objective function maximizes the likelihood of the policy while suppressing the deviation between a trained model and the reference model using a sequential risk ratio, thereby enhancing the model's risk-awareness. Experimental results across three open-source datasets: IMDb Dataset, Anthropic HH Dataset, and AlpacaEval, demonstrate the proposed method's superior performance in balancing alignment performance and model drift. Our code is opensourced at https://github.com/zlj123-max/Ra-DPO.
Accelerated Primal-Dual Methods for Convex-Strongly-Concave Saddle Point Problems
We investigate a primal-dual (PD) method for the saddle point problem (SPP) that uses a linear approximation of the primal function instead of the standard proximal step, resulting in a linearized PD (LPD) method. For convex-strongly concave SPP, we observe that the LPD method has a suboptimal dependence on the Lipschitz constant of the primal function. To fix this issue, we combine features of Accelerated Gradient Descent with the LPD method resulting in a single-loop Accelerated Linearized Primal-Dual (ALPD) method. ALPD method achieves the optimal gradient complexity when the SPP has a semi-linear coupling function. We also present an inexact ALPD method for SPPs with a general nonlinear coupling function that maintains the optimal gradient evaluations of the primal parts and significantly improves the gradient evaluations of the coupling term compared to the ALPD method. We verify our findings with numerical experiments.
Second-order optimization with lazy Hessians
We analyze Newton's method with lazy Hessian updates for solving general possibly non-convex optimization problems. We propose to reuse a previously seen Hessian for several iterations while computing new gradients at each step of the method. This significantly reduces the overall arithmetical complexity of second-order optimization schemes. By using the cubic regularization technique, we establish fast global convergence of our method to a second-order stationary point, while the Hessian does not need to be updated each iteration. For convex problems, we justify global and local superlinear rates for lazy Newton steps with quadratic regularization, which is easier to compute. The optimal frequency for updating the Hessian is once every d iterations, where d is the dimension of the problem. This provably improves the total arithmetical complexity of second-order algorithms by a factor d.
ConcaveQ: Non-Monotonic Value Function Factorization via Concave Representations in Deep Multi-Agent Reinforcement Learning
Value function factorization has achieved great success in multi-agent reinforcement learning by optimizing joint action-value functions through the maximization of factorized per-agent utilities. To ensure Individual-Global-Maximum property, existing works often focus on value factorization using monotonic functions, which are known to result in restricted representation expressiveness. In this paper, we analyze the limitations of monotonic factorization and present ConcaveQ, a novel non-monotonic value function factorization approach that goes beyond monotonic mixing functions and employs neural network representations of concave mixing functions. Leveraging the concave property in factorization, an iterative action selection scheme is developed to obtain optimal joint actions during training. It is used to update agents' local policy networks, enabling fully decentralized execution. The effectiveness of the proposed ConcaveQ is validated across scenarios involving multi-agent predator-prey environment and StarCraft II micromanagement tasks. Empirical results exhibit significant improvement of ConcaveQ over state-of-the-art multi-agent reinforcement learning approaches.
Jacobian Descent for Multi-Objective Optimization
Many optimization problems are inherently multi-objective. To address them, we formalize Jacobian descent (JD), a direct generalization of gradient descent for vector-valued functions. Each step of this algorithm relies on a Jacobian matrix consisting of one gradient per objective. The aggregator, responsible for reducing this matrix into an update vector, characterizes JD. While the multi-task learning literature already contains a variety of aggregators, they often lack some natural properties. In particular, the update should not conflict with any objective and should scale proportionally to the norm of each gradient. We propose a new aggregator specifically designed to satisfy this. Emphasizing conflict between objectives, we then highlight direct applications for our methods. Most notably, we introduce instance-wise risk minimization (IWRM), a learning paradigm in which the loss of each training example is considered a separate objective. On simple image classification tasks, IWRM exhibits promising results compared to the direct minimization of the average loss. The performance of our aggregator in those experiments also corroborates our theoretical findings. Lastly, as speed is the main limitation of JD, we provide a path towards a more efficient implementation.
Complete Dictionary Learning via ell_p-norm Maximization
Dictionary learning is a classic representation learning method that has been widely applied in signal processing and data analytics. In this paper, we investigate a family of ell_p-norm (p>2,p in N) maximization approaches for the complete dictionary learning problem from theoretical and algorithmic aspects. Specifically, we prove that the global maximizers of these formulations are very close to the true dictionary with high probability, even when Gaussian noise is present. Based on the generalized power method (GPM), an efficient algorithm is then developed for the ell_p-based formulations. We further show the efficacy of the developed algorithm: for the population GPM algorithm over the sphere constraint, it first quickly enters the neighborhood of a global maximizer, and then converges linearly in this region. Extensive experiments will demonstrate that the ell_p-based approaches enjoy a higher computational efficiency and better robustness than conventional approaches and p=3 performs the best.
Mixing predictions for online metric algorithms
A major technique in learning-augmented online algorithms is combining multiple algorithms or predictors. Since the performance of each predictor may vary over time, it is desirable to use not the single best predictor as a benchmark, but rather a dynamic combination which follows different predictors at different times. We design algorithms that combine predictions and are competitive against such dynamic combinations for a wide class of online problems, namely, metrical task systems. Against the best (in hindsight) unconstrained combination of ell predictors, we obtain a competitive ratio of O(ell^2), and show that this is best possible. However, for a benchmark with slightly constrained number of switches between different predictors, we can get a (1+epsilon)-competitive algorithm. Moreover, our algorithms can be adapted to access predictors in a bandit-like fashion, querying only one predictor at a time. An unexpected implication of one of our lower bounds is a new structural insight about covering formulations for the k-server problem.
Score Approximation, Estimation and Distribution Recovery of Diffusion Models on Low-Dimensional Data
Diffusion models achieve state-of-the-art performance in various generation tasks. However, their theoretical foundations fall far behind. This paper studies score approximation, estimation, and distribution recovery of diffusion models, when data are supported on an unknown low-dimensional linear subspace. Our result provides sample complexity bounds for distribution estimation using diffusion models. We show that with a properly chosen neural network architecture, the score function can be both accurately approximated and efficiently estimated. Furthermore, the generated distribution based on the estimated score function captures the data geometric structures and converges to a close vicinity of the data distribution. The convergence rate depends on the subspace dimension, indicating that diffusion models can circumvent the curse of data ambient dimensionality.
On Second-Order Scoring Rules for Epistemic Uncertainty Quantification
It is well known that accurate probabilistic predictors can be trained through empirical risk minimisation with proper scoring rules as loss functions. While such learners capture so-called aleatoric uncertainty of predictions, various machine learning methods have recently been developed with the goal to let the learner also represent its epistemic uncertainty, i.e., the uncertainty caused by a lack of knowledge and data. An emerging branch of the literature proposes the use of a second-order learner that provides predictions in terms of distributions on probability distributions. However, recent work has revealed serious theoretical shortcomings for second-order predictors based on loss minimisation. In this paper, we generalise these findings and prove a more fundamental result: There seems to be no loss function that provides an incentive for a second-order learner to faithfully represent its epistemic uncertainty in the same manner as proper scoring rules do for standard (first-order) learners. As a main mathematical tool to prove this result, we introduce the generalised notion of second-order scoring rules.
The Unreasonable Effectiveness of Gaussian Score Approximation for Diffusion Models and its Applications
By learning the gradient of smoothed data distributions, diffusion models can iteratively generate samples from complex distributions. The learned score function enables their generalization capabilities, but how the learned score relates to the score of the underlying data manifold remains largely unclear. Here, we aim to elucidate this relationship by comparing learned neural scores to the scores of two kinds of analytically tractable distributions: Gaussians and Gaussian mixtures. The simplicity of the Gaussian model makes it theoretically attractive, and we show that it admits a closed-form solution and predicts many qualitative aspects of sample generation dynamics. We claim that the learned neural score is dominated by its linear (Gaussian) approximation for moderate to high noise scales, and supply both theoretical and empirical arguments to support this claim. Moreover, the Gaussian approximation empirically works for a larger range of noise scales than naive theory suggests it should, and is preferentially learned early in training. At smaller noise scales, we observe that learned scores are better described by a coarse-grained (Gaussian mixture) approximation of training data than by the score of the training distribution, a finding consistent with generalization. Our findings enable us to precisely predict the initial phase of trained models' sampling trajectories through their Gaussian approximations. We show that this allows the skipping of the first 15-30% of sampling steps while maintaining high sample quality (with a near state-of-the-art FID score of 1.93 on CIFAR-10 unconditional generation). This forms the foundation of a novel hybrid sampling method, termed analytical teleportation, which can seamlessly integrate with and accelerate existing samplers, including DPM-Solver-v3 and UniPC. Our findings suggest ways to improve the design and training of diffusion models.
SANIA: Polyak-type Optimization Framework Leads to Scale Invariant Stochastic Algorithms
Adaptive optimization methods are widely recognized as among the most popular approaches for training Deep Neural Networks (DNNs). Techniques such as Adam, AdaGrad, and AdaHessian utilize a preconditioner that modifies the search direction by incorporating information about the curvature of the objective function. However, despite their adaptive characteristics, these methods still require manual fine-tuning of the step-size. This, in turn, impacts the time required to solve a particular problem. This paper presents an optimization framework named SANIA to tackle these challenges. Beyond eliminating the need for manual step-size hyperparameter settings, SANIA incorporates techniques to address poorly scaled or ill-conditioned problems. We also explore several preconditioning methods, including Hutchinson's method, which approximates the Hessian diagonal of the loss function. We conclude with an extensive empirical examination of the proposed techniques across classification tasks, covering both convex and non-convex contexts.
Sketching Meets Differential Privacy: Fast Algorithm for Dynamic Kronecker Projection Maintenance
Projection maintenance is one of the core data structure tasks. Efficient data structures for projection maintenance have led to recent breakthroughs in many convex programming algorithms. In this work, we further extend this framework to the Kronecker product structure. Given a constraint matrix {sf A} and a positive semi-definite matrix Win R^{ntimes n} with a sparse eigenbasis, we consider the task of maintaining the projection in the form of {sf B}^top({sf B}{sf B}^top)^{-1}{sf B}, where {sf B}={sf A}(Wotimes I) or {sf B}={sf A}(W^{1/2}otimes W^{1/2}). At each iteration, the weight matrix W receives a low rank change and we receive a new vector h. The goal is to maintain the projection matrix and answer the query {sf B}^top({sf B}{sf B}^top)^{-1}{sf B}h with good approximation guarantees. We design a fast dynamic data structure for this task and it is robust against an adaptive adversary. Following the beautiful and pioneering work of [Beimel, Kaplan, Mansour, Nissim, Saranurak and Stemmer, STOC'22], we use tools from differential privacy to reduce the randomness required by the data structure and further improve the running time.
Deep Sets
We study the problem of designing models for machine learning tasks defined on sets. In contrast to traditional approach of operating on fixed dimensional vectors, we consider objective functions defined on sets that are invariant to permutations. Such problems are widespread, ranging from estimation of population statistics poczos13aistats, to anomaly detection in piezometer data of embankment dams Jung15Exploration, to cosmology Ntampaka16Dynamical,Ravanbakhsh16ICML1. Our main theorem characterizes the permutation invariant functions and provides a family of functions to which any permutation invariant objective function must belong. This family of functions has a special structure which enables us to design a deep network architecture that can operate on sets and which can be deployed on a variety of scenarios including both unsupervised and supervised learning tasks. We also derive the necessary and sufficient conditions for permutation equivariance in deep models. We demonstrate the applicability of our method on population statistic estimation, point cloud classification, set expansion, and outlier detection.
Preference Learning Algorithms Do Not Learn Preference Rankings
Preference learning algorithms (e.g., RLHF and DPO) are frequently used to steer LLMs to produce generations that are more preferred by humans, but our understanding of their inner workings is still limited. In this work, we study the conventional wisdom that preference learning trains models to assign higher likelihoods to more preferred outputs than less preferred outputs, measured via ranking accuracy. Surprisingly, we find that most state-of-the-art preference-tuned models achieve a ranking accuracy of less than 60% on common preference datasets. We furthermore derive the idealized ranking accuracy that a preference-tuned LLM would achieve if it optimized the DPO or RLHF objective perfectly. We demonstrate that existing models exhibit a significant alignment gap -- i.e., a gap between the observed and idealized ranking accuracies. We attribute this discrepancy to the DPO objective, which is empirically and theoretically ill-suited to fix even mild ranking errors in the reference model, and derive a simple and efficient formula for quantifying the difficulty of learning a given preference datapoint. Finally, we demonstrate that ranking accuracy strongly correlates with the empirically popular win rate metric when the model is close to the reference model used in the objective, shedding further light on the differences between on-policy (e.g., RLHF) and off-policy (e.g., DPO) preference learning algorithms.
On Pairwise Clustering with Side Information
Pairwise clustering, in general, partitions a set of items via a known similarity function. In our treatment, clustering is modeled as a transductive prediction problem. Thus rather than beginning with a known similarity function, the function instead is hidden and the learner only receives a random sample consisting of a subset of the pairwise similarities. An additional set of pairwise side-information may be given to the learner, which then determines the inductive bias of our algorithms. We measure performance not based on the recovery of the hidden similarity function, but instead on how well we classify each item. We give tight bounds on the number of misclassifications. We provide two algorithms. The first algorithm SACA is a simple agglomerative clustering algorithm which runs in near linear time, and which serves as a baseline for our analyses. Whereas the second algorithm, RGCA, enables the incorporation of side-information which may lead to improved bounds at the cost of a longer running time.
Novel Quadratic Constraints for Extending LipSDP beyond Slope-Restricted Activations
Recently, semidefinite programming (SDP) techniques have shown great promise in providing accurate Lipschitz bounds for neural networks. Specifically, the LipSDP approach (Fazlyab et al., 2019) has received much attention and provides the least conservative Lipschitz upper bounds that can be computed with polynomial time guarantees. However, one main restriction of LipSDP is that its formulation requires the activation functions to be slope-restricted on [0,1], preventing its further use for more general activation functions such as GroupSort, MaxMin, and Householder. One can rewrite MaxMin activations for example as residual ReLU networks. However, a direct application of LipSDP to the resultant residual ReLU networks is conservative and even fails in recovering the well-known fact that the MaxMin activation is 1-Lipschitz. Our paper bridges this gap and extends LipSDP beyond slope-restricted activation functions. To this end, we provide novel quadratic constraints for GroupSort, MaxMin, and Householder activations via leveraging their underlying properties such as sum preservation. Our proposed analysis is general and provides a unified approach for estimating ell_2 and ell_infty Lipschitz bounds for a rich class of neural network architectures, including non-residual and residual neural networks and implicit models, with GroupSort, MaxMin, and Householder activations. Finally, we illustrate the utility of our approach with a variety of experiments and show that our proposed SDPs generate less conservative Lipschitz bounds in comparison to existing approaches.
Strong Screening Rules for Group-based SLOPE Models
Tuning the regularization parameter in penalized regression models is an expensive task, requiring multiple models to be fit along a path of parameters. Strong screening rules drastically reduce computational costs by lowering the dimensionality of the input prior to fitting. We develop strong screening rules for group-based Sorted L-One Penalized Estimation (SLOPE) models: Group SLOPE and Sparse-group SLOPE. The developed rules are applicable to the wider family of group-based OWL models, including OSCAR. Our experiments on both synthetic and real data show that the screening rules significantly accelerate the fitting process. The screening rules make it accessible for group SLOPE and sparse-group SLOPE to be applied to high-dimensional datasets, particularly those encountered in genetics.
The Minkowski Billiard Characterization of the EHZ-capacity of Convex Lagrangian Products
We rigorously state the connection between the EHZ-capacity of convex Lagrangian products Ktimes TsubsetR^ntimesR^n and the minimal length of closed (K,T)-Minkowski billiard trajectories. This connection was made explicit for the first time by Artstein-Avidan and Ostrover under the assumption of smoothness and strict convexity of both K and T. We prove this connection in its full generality, i.e., without requiring any conditions on the convex bodies K and T. This prepares the computation of the EHZ-capacity of convex Lagrangian products of two convex polytopes by using discrete computational methods.
Robust Multi-Objective Controlled Decoding of Large Language Models
Test-time alignment of Large Language Models (LLMs) to human preferences offers a flexible way to generate responses aligned to diverse objectives without extensive retraining of LLMs. Existing methods achieve alignment to multiple objectives simultaneously (e.g., instruction-following, helpfulness, conciseness) by optimizing their corresponding reward functions. However, they often rely on predefined weights or optimize for averages, sacrificing one objective for another and leading to unbalanced outcomes. To address this, we introduce Robust Multi-Objective Decoding (RMOD), a novel inference-time algorithm that optimizes for improving worst-case rewards. RMOD formalizes the robust decoding problem as a maximin two-player game between reward weights and the sampling policy, solving for the Nash equilibrium. We show that the game reduces to a convex optimization problem to find the worst-case weights, while the best response policy can be computed analytically. We also introduce a practical RMOD variant designed for efficient decoding with contemporary LLMs, incurring minimal computational overhead compared to non-robust Multi-Objective Decoding (MOD) methods. Our experimental results showcase the effectiveness of RMOD in generating responses equitably aligned with diverse objectives, outperforming baselines up to 20%.
The Multimarginal Optimal Transport Formulation of Adversarial Multiclass Classification
We study a family of adversarial multiclass classification problems and provide equivalent reformulations in terms of: 1) a family of generalized barycenter problems introduced in the paper and 2) a family of multimarginal optimal transport problems where the number of marginals is equal to the number of classes in the original classification problem. These new theoretical results reveal a rich geometric structure of adversarial learning problems in multiclass classification and extend recent results restricted to the binary classification setting. A direct computational implication of our results is that by solving either the barycenter problem and its dual, or the MOT problem and its dual, we can recover the optimal robust classification rule and the optimal adversarial strategy for the original adversarial problem. Examples with synthetic and real data illustrate our results.
Improved Learning-Augmented Algorithms for the Multi-Option Ski Rental Problem via Best-Possible Competitive Analysis
In this paper, we present improved learning-augmented algorithms for the multi-option ski rental problem. Learning-augmented algorithms take ML predictions as an added part of the input and incorporates these predictions in solving the given problem. Due to their unique strength that combines the power of ML predictions with rigorous performance guarantees, they have been extensively studied in the context of online optimization problems. Even though ski rental problems are one of the canonical problems in the field of online optimization, only deterministic algorithms were previously known for multi-option ski rental, with or without learning augmentation. We present the first randomized learning-augmented algorithm for this problem, surpassing previous performance guarantees given by deterministic algorithms. Our learning-augmented algorithm is based on a new, provably best-possible randomized competitive algorithm for the problem. Our results are further complemented by lower bounds for deterministic and randomized algorithms, and computational experiments evaluating our algorithms' performance improvements.
An Optimistic Acceleration of AMSGrad for Nonconvex Optimization
We propose a new variant of AMSGrad, a popular adaptive gradient based optimization algorithm widely used for training deep neural networks. Our algorithm adds prior knowledge about the sequence of consecutive mini-batch gradients and leverages its underlying structure making the gradients sequentially predictable. By exploiting the predictability and ideas from optimistic online learning, the proposed algorithm can accelerate the convergence and increase sample efficiency. After establishing a tighter upper bound under some convexity conditions on the regret, we offer a complimentary view of our algorithm which generalizes the offline and stochastic version of nonconvex optimization. In the nonconvex case, we establish a non-asymptotic convergence bound independently of the initialization. We illustrate the practical speedup on several deep learning models via numerical experiments.
A representation-learning game for classes of prediction tasks
We propose a game-based formulation for learning dimensionality-reducing representations of feature vectors, when only a prior knowledge on future prediction tasks is available. In this game, the first player chooses a representation, and then the second player adversarially chooses a prediction task from a given class, representing the prior knowledge. The first player aims is to minimize, and the second player to maximize, the regret: The minimal prediction loss using the representation, compared to the same loss using the original features. For the canonical setting in which the representation, the response to predict and the predictors are all linear functions, and under the mean squared error loss function, we derive the theoretically optimal representation in pure strategies, which shows the effectiveness of the prior knowledge, and the optimal regret in mixed strategies, which shows the usefulness of randomizing the representation. For general representations and loss functions, we propose an efficient algorithm to optimize a randomized representation. The algorithm only requires the gradients of the loss function, and is based on incrementally adding a representation rule to a mixture of such rules.
Learning Thresholds with Latent Values and Censored Feedback
In this paper, we investigate a problem of actively learning threshold in latent space, where the unknown reward g(gamma, v) depends on the proposed threshold gamma and latent value v and it can be only achieved if the threshold is lower than or equal to the unknown latent value. This problem has broad applications in practical scenarios, e.g., reserve price optimization in online auctions, online task assignments in crowdsourcing, setting recruiting bars in hiring, etc. We first characterize the query complexity of learning a threshold with the expected reward at most epsilon smaller than the optimum and prove that the number of queries needed can be infinitely large even when g(gamma, v) is monotone with respect to both gamma and v. On the positive side, we provide a tight query complexity Theta(1/epsilon^3) when g is monotone and the CDF of value distribution is Lipschitz. Moreover, we show a tight Theta(1/epsilon^3) query complexity can be achieved as long as g satisfies one-sided Lipschitzness, which provides a complete characterization for this problem. Finally, we extend this model to an online learning setting and demonstrate a tight Theta(T^{2/3}) regret bound using continuous-arm bandit techniques and the aforementioned query complexity results.
Constrained Optimization via Exact Augmented Lagrangian and Randomized Iterative Sketching
We consider solving equality-constrained nonlinear, nonconvex optimization problems. This class of problems appears widely in a variety of applications in machine learning and engineering, ranging from constrained deep neural networks, to optimal control, to PDE-constrained optimization. We develop an adaptive inexact Newton method for this problem class. In each iteration, we solve the Lagrangian Newton system inexactly via a randomized iterative sketching solver, and select a suitable stepsize by performing line search on an exact augmented Lagrangian merit function. The randomized solvers have advantages over deterministic linear system solvers by significantly reducing per-iteration flops complexity and storage cost, when equipped with suitable sketching matrices. Our method adaptively controls the accuracy of the randomized solver and the penalty parameters of the exact augmented Lagrangian, to ensure that the inexact Newton direction is a descent direction of the exact augmented Lagrangian. This allows us to establish a global almost sure convergence. We also show that a unit stepsize is admissible locally, so that our method exhibits a local linear convergence. Furthermore, we prove that the linear convergence can be strengthened to superlinear convergence if we gradually sharpen the adaptive accuracy condition on the randomized solver. We demonstrate the superior performance of our method on benchmark nonlinear problems in CUTEst test set, constrained logistic regression with data from LIBSVM, and a PDE-constrained problem.
Gradient Boosting Neural Networks: GrowNet
A novel gradient boosting framework is proposed where shallow neural networks are employed as ``weak learners''. General loss functions are considered under this unified framework with specific examples presented for classification, regression, and learning to rank. A fully corrective step is incorporated to remedy the pitfall of greedy function approximation of classic gradient boosting decision tree. The proposed model rendered outperforming results against state-of-the-art boosting methods in all three tasks on multiple datasets. An ablation study is performed to shed light on the effect of each model components and model hyperparameters.
Shuffle Private Stochastic Convex Optimization
In shuffle privacy, each user sends a collection of randomized messages to a trusted shuffler, the shuffler randomly permutes these messages, and the resulting shuffled collection of messages must satisfy differential privacy. Prior work in this model has largely focused on protocols that use a single round of communication to compute algorithmic primitives like means, histograms, and counts. We present interactive shuffle protocols for stochastic convex optimization. Our protocols rely on a new noninteractive protocol for summing vectors of bounded ell_2 norm. By combining this sum subroutine with mini-batch stochastic gradient descent, accelerated gradient descent, and Nesterov's smoothing method, we obtain loss guarantees for a variety of convex loss functions that significantly improve on those of the local model and sometimes match those of the central model.
Oracle Efficient Algorithms for Groupwise Regret
We study the problem of online prediction, in which at each time step t, an individual x_t arrives, whose label we must predict. Each individual is associated with various groups, defined based on their features such as age, sex, race etc., which may intersect. Our goal is to make predictions that have regret guarantees not just overall but also simultaneously on each sub-sequence comprised of the members of any single group. Previous work such as [Blum & Lykouris] and [Lee et al] provide attractive regret guarantees for these problems; however, these are computationally intractable on large model classes. We show that a simple modification of the sleeping experts technique of [Blum & Lykouris] yields an efficient reduction to the well-understood problem of obtaining diminishing external regret absent group considerations. Our approach gives similar regret guarantees compared to [Blum & Lykouris]; however, we run in time linear in the number of groups, and are oracle-efficient in the hypothesis class. This in particular implies that our algorithm is efficient whenever the number of groups is polynomially bounded and the external-regret problem can be solved efficiently, an improvement on [Blum & Lykouris]'s stronger condition that the model class must be small. Our approach can handle online linear regression and online combinatorial optimization problems like online shortest paths. Beyond providing theoretical regret bounds, we evaluate this algorithm with an extensive set of experiments on synthetic data and on two real data sets -- Medical costs and the Adult income dataset, both instantiated with intersecting groups defined in terms of race, sex, and other demographic characteristics. We find that uniformly across groups, our algorithm gives substantial error improvements compared to running a standard online linear regression algorithm with no groupwise regret guarantees.
Linear Adversarial Concept Erasure
Modern neural models trained on textual data rely on pre-trained representations that emerge without direct supervision. As these representations are increasingly being used in real-world applications, the inability to control their content becomes an increasingly important problem. We formulate the problem of identifying and erasing a linear subspace that corresponds to a given concept, in order to prevent linear predictors from recovering the concept. We model this problem as a constrained, linear maximin game, and show that existing solutions are generally not optimal for this task. We derive a closed-form solution for certain objectives, and propose a convex relaxation, \method, that works well for others. When evaluated in the context of binary gender removal, the method recovers a low-dimensional subspace whose removal mitigates bias by intrinsic and extrinsic evaluation. We show that the method is highly expressive, effectively mitigating bias in deep nonlinear classifiers while maintaining tractability and interpretability.
Robust Losses for Learning Value Functions
Most value function learning algorithms in reinforcement learning are based on the mean squared (projected) Bellman error. However, squared errors are known to be sensitive to outliers, both skewing the solution of the objective and resulting in high-magnitude and high-variance gradients. To control these high-magnitude updates, typical strategies in RL involve clipping gradients, clipping rewards, rescaling rewards, or clipping errors. While these strategies appear to be related to robust losses -- like the Huber loss -- they are built on semi-gradient update rules which do not minimize a known loss. In this work, we build on recent insights reformulating squared Bellman errors as a saddlepoint optimization problem and propose a saddlepoint reformulation for a Huber Bellman error and Absolute Bellman error. We start from a formalization of robust losses, then derive sound gradient-based approaches to minimize these losses in both the online off-policy prediction and control settings. We characterize the solutions of the robust losses, providing insight into the problem settings where the robust losses define notably better solutions than the mean squared Bellman error. Finally, we show that the resulting gradient-based algorithms are more stable, for both prediction and control, with less sensitivity to meta-parameters.
On the Convergence of Adam and Beyond
Several recently proposed stochastic optimization methods that have been successfully used in training deep networks such as RMSProp, Adam, Adadelta, Nadam are based on using gradient updates scaled by square roots of exponential moving averages of squared past gradients. In many applications, e.g. learning with large output spaces, it has been empirically observed that these algorithms fail to converge to an optimal solution (or a critical point in nonconvex settings). We show that one cause for such failures is the exponential moving average used in the algorithms. We provide an explicit example of a simple convex optimization setting where Adam does not converge to the optimal solution, and describe the precise problems with the previous analysis of Adam algorithm. Our analysis suggests that the convergence issues can be fixed by endowing such algorithms with `long-term memory' of past gradients, and propose new variants of the Adam algorithm which not only fix the convergence issues but often also lead to improved empirical performance.
Communication-Efficient Gradient Descent-Accent Methods for Distributed Variational Inequalities: Unified Analysis and Local Updates
Distributed and federated learning algorithms and techniques associated primarily with minimization problems. However, with the increase of minimax optimization and variational inequality problems in machine learning, the necessity of designing efficient distributed/federated learning approaches for these problems is becoming more apparent. In this paper, we provide a unified convergence analysis of communication-efficient local training methods for distributed variational inequality problems (VIPs). Our approach is based on a general key assumption on the stochastic estimates that allows us to propose and analyze several novel local training algorithms under a single framework for solving a class of structured non-monotone VIPs. We present the first local gradient descent-accent algorithms with provable improved communication complexity for solving distributed variational inequalities on heterogeneous data. The general algorithmic framework recovers state-of-the-art algorithms and their sharp convergence guarantees when the setting is specialized to minimization or minimax optimization problems. Finally, we demonstrate the strong performance of the proposed algorithms compared to state-of-the-art methods when solving federated minimax optimization problems.
Value-Incentivized Preference Optimization: A Unified Approach to Online and Offline RLHF
Reinforcement learning from human feedback (RLHF) has demonstrated great promise in aligning large language models (LLMs) with human preference. Depending on the availability of preference data, both online and offline RLHF are active areas of investigation. A key bottleneck is understanding how to incorporate uncertainty estimation in the reward function learned from the preference data for RLHF, regardless of how the preference data is collected. While the principles of optimism or pessimism under uncertainty are well-established in standard reinforcement learning (RL), a practically-implementable and theoretically-grounded form amenable to large language models is not yet available, as standard techniques for constructing confidence intervals become intractable under arbitrary policy parameterizations. In this paper, we introduce a unified approach to online and offline RLHF -- value-incentivized preference optimization (VPO) -- which regularizes the maximum-likelihood estimate of the reward function with the corresponding value function, modulated by a sign to indicate whether the optimism or pessimism is chosen. VPO also directly optimizes the policy with implicit reward modeling, and therefore shares a simpler RLHF pipeline similar to direct preference optimization. Theoretical guarantees of VPO are provided for both online and offline settings, matching the rates of their standard RL counterparts. Moreover, experiments on text summarization and dialog verify the practicality and effectiveness of VPO.
Bring Metric Functions into Diffusion Models
We introduce a Cascaded Diffusion Model (Cas-DM) that improves a Denoising Diffusion Probabilistic Model (DDPM) by effectively incorporating additional metric functions in training. Metric functions such as the LPIPS loss have been proven highly effective in consistency models derived from the score matching. However, for the diffusion counterparts, the methodology and efficacy of adding extra metric functions remain unclear. One major challenge is the mismatch between the noise predicted by a DDPM at each step and the desired clean image that the metric function works well on. To address this problem, we propose Cas-DM, a network architecture that cascades two network modules to effectively apply metric functions to the diffusion model training. The first module, similar to a standard DDPM, learns to predict the added noise and is unaffected by the metric function. The second cascaded module learns to predict the clean image, thereby facilitating the metric function computation. Experiment results show that the proposed diffusion model backbone enables the effective use of the LPIPS loss, leading to state-of-the-art image quality (FID, sFID, IS) on various established benchmarks.
Non-Exchangeable Conformal Risk Control
Split conformal prediction has recently sparked great interest due to its ability to provide formally guaranteed uncertainty sets or intervals for predictions made by black-box neural models, ensuring a predefined probability of containing the actual ground truth. While the original formulation assumes data exchangeability, some extensions handle non-exchangeable data, which is often the case in many real-world scenarios. In parallel, some progress has been made in conformal methods that provide statistical guarantees for a broader range of objectives, such as bounding the best F_1-score or minimizing the false negative rate in expectation. In this paper, we leverage and extend these two lines of work by proposing non-exchangeable conformal risk control, which allows controlling the expected value of any monotone loss function when the data is not exchangeable. Our framework is flexible, makes very few assumptions, and allows weighting the data based on its relevance for a given test example; a careful choice of weights may result on tighter bounds, making our framework useful in the presence of change points, time series, or other forms of distribution drift. Experiments with both synthetic and real world data show the usefulness of our method.
Averaged Method of Multipliers for Bi-Level Optimization without Lower-Level Strong Convexity
Gradient methods have become mainstream techniques for Bi-Level Optimization (BLO) in learning fields. The validity of existing works heavily rely on either a restrictive Lower- Level Strong Convexity (LLSC) condition or on solving a series of approximation subproblems with high accuracy or both. In this work, by averaging the upper and lower level objectives, we propose a single loop Bi-level Averaged Method of Multipliers (sl-BAMM) for BLO that is simple yet efficient for large-scale BLO and gets rid of the limited LLSC restriction. We further provide non-asymptotic convergence analysis of sl-BAMM towards KKT stationary points, and the comparative advantage of our analysis lies in the absence of strong gradient boundedness assumption, which is always required by others. Thus our theory safely captures a wider variety of applications in deep learning, especially where the upper-level objective is quadratic w.r.t. the lower-level variable. Experimental results demonstrate the superiority of our method.
Doubly Optimal No-Regret Learning in Monotone Games
We consider online learning in multi-player smooth monotone games. Existing algorithms have limitations such as (1) being only applicable to strongly monotone games; (2) lacking the no-regret guarantee; (3) having only asymptotic or slow O(1{T}) last-iterate convergence rate to a Nash equilibrium. While the O(1{T}) rate is tight for a large class of algorithms including the well-studied extragradient algorithm and optimistic gradient algorithm, it is not optimal for all gradient-based algorithms. We propose the accelerated optimistic gradient (AOG) algorithm, the first doubly optimal no-regret learning algorithm for smooth monotone games. Namely, our algorithm achieves both (i) the optimal O(T) regret in the adversarial setting under smooth and convex loss functions and (ii) the optimal O(1{T}) last-iterate convergence rate to a Nash equilibrium in multi-player smooth monotone games. As a byproduct of the accelerated last-iterate convergence rate, we further show that each player suffers only an O(log T) individual worst-case dynamic regret, providing an exponential improvement over the previous state-of-the-art O(T) bound.
One-Nearest-Neighbor Search is All You Need for Minimax Optimal Regression and Classification
Recently, Qiao, Duan, and Cheng~(2019) proposed a distributed nearest-neighbor classification method, in which a massive dataset is split into smaller groups, each processed with a k-nearest-neighbor classifier, and the final class label is predicted by a majority vote among these groupwise class labels. This paper shows that the distributed algorithm with k=1 over a sufficiently large number of groups attains a minimax optimal error rate up to a multiplicative logarithmic factor under some regularity conditions, for both regression and classification problems. Roughly speaking, distributed 1-nearest-neighbor rules with M groups has a performance comparable to standard Theta(M)-nearest-neighbor rules. In the analysis, alternative rules with a refined aggregation method are proposed and shown to attain exact minimax optimal rates.
Multiscale Score Matching for Out-of-Distribution Detection
We present a new methodology for detecting out-of-distribution (OOD) images by utilizing norms of the score estimates at multiple noise scales. A score is defined to be the gradient of the log density with respect to the input data. Our methodology is completely unsupervised and follows a straight forward training scheme. First, we train a deep network to estimate scores for levels of noise. Once trained, we calculate the noisy score estimates for N in-distribution samples and take the L2-norms across the input dimensions (resulting in an NxL matrix). Then we train an auxiliary model (such as a Gaussian Mixture Model) to learn the in-distribution spatial regions in this L-dimensional space. This auxiliary model can now be used to identify points that reside outside the learned space. Despite its simplicity, our experiments show that this methodology significantly outperforms the state-of-the-art in detecting out-of-distribution images. For example, our method can effectively separate CIFAR-10 (inlier) and SVHN (OOD) images, a setting which has been previously shown to be difficult for deep likelihood models.
A non-asymptotic approach for model selection via penalization in high-dimensional mixture of experts models
Mixture of experts (MoE) are a popular class of statistical and machine learning models that have gained attention over the years due to their flexibility and efficiency. In this work, we consider Gaussian-gated localized MoE (GLoME) and block-diagonal covariance localized MoE (BLoME) regression models to present nonlinear relationships in heterogeneous data with potential hidden graph-structured interactions between high-dimensional predictors. These models pose difficult statistical estimation and model selection questions, both from a computational and theoretical perspective. This paper is devoted to the study of the problem of model selection among a collection of GLoME or BLoME models characterized by the number of mixture components, the complexity of Gaussian mean experts, and the hidden block-diagonal structures of the covariance matrices, in a penalized maximum likelihood estimation framework. In particular, we establish non-asymptotic risk bounds that take the form of weak oracle inequalities, provided that lower bounds for the penalties hold. The good empirical behavior of our models is then demonstrated on synthetic and real datasets.
LCOT: Linear circular optimal transport
The optimal transport problem for measures supported on non-Euclidean spaces has recently gained ample interest in diverse applications involving representation learning. In this paper, we focus on circular probability measures, i.e., probability measures supported on the unit circle, and introduce a new computationally efficient metric for these measures, denoted as Linear Circular Optimal Transport (LCOT). The proposed metric comes with an explicit linear embedding that allows one to apply Machine Learning (ML) algorithms to the embedded measures and seamlessly modify the underlying metric for the ML algorithm to LCOT. We show that the proposed metric is rooted in the Circular Optimal Transport (COT) and can be considered the linearization of the COT metric with respect to a fixed reference measure. We provide a theoretical analysis of the proposed metric and derive the computational complexities for pairwise comparison of circular probability measures. Lastly, through a set of numerical experiments, we demonstrate the benefits of LCOT in learning representations of circular measures.
Studying Large Language Model Generalization with Influence Functions
When trying to gain better visibility into a machine learning model in order to understand and mitigate the associated risks, a potentially valuable source of evidence is: which training examples most contribute to a given behavior? Influence functions aim to answer a counterfactual: how would the model's parameters (and hence its outputs) change if a given sequence were added to the training set? While influence functions have produced insights for small models, they are difficult to scale to large language models (LLMs) due to the difficulty of computing an inverse-Hessian-vector product (IHVP). We use the Eigenvalue-corrected Kronecker-Factored Approximate Curvature (EK-FAC) approximation to scale influence functions up to LLMs with up to 52 billion parameters. In our experiments, EK-FAC achieves similar accuracy to traditional influence function estimators despite the IHVP computation being orders of magnitude faster. We investigate two algorithmic techniques to reduce the cost of computing gradients of candidate training sequences: TF-IDF filtering and query batching. We use influence functions to investigate the generalization patterns of LLMs, including the sparsity of the influence patterns, increasing abstraction with scale, math and programming abilities, cross-lingual generalization, and role-playing behavior. Despite many apparently sophisticated forms of generalization, we identify a surprising limitation: influences decay to near-zero when the order of key phrases is flipped. Overall, influence functions give us a powerful new tool for studying the generalization properties of LLMs.
Multimarginal generative modeling with stochastic interpolants
Given a set of K probability densities, we consider the multimarginal generative modeling problem of learning a joint distribution that recovers these densities as marginals. The structure of this joint distribution should identify multi-way correspondences among the prescribed marginals. We formalize an approach to this task within a generalization of the stochastic interpolant framework, leading to efficient learning algorithms built upon dynamical transport of measure. Our generative models are defined by velocity and score fields that can be characterized as the minimizers of simple quadratic objectives, and they are defined on a simplex that generalizes the time variable in the usual dynamical transport framework. The resulting transport on the simplex is influenced by all marginals, and we show that multi-way correspondences can be extracted. The identification of such correspondences has applications to style transfer, algorithmic fairness, and data decorruption. In addition, the multimarginal perspective enables an efficient algorithm for reducing the dynamical transport cost in the ordinary two-marginal setting. We demonstrate these capacities with several numerical examples.
A Precise Characterization of SGD Stability Using Loss Surface Geometry
Stochastic Gradient Descent (SGD) stands as a cornerstone optimization algorithm with proven real-world empirical successes but relatively limited theoretical understanding. Recent research has illuminated a key factor contributing to its practical efficacy: the implicit regularization it instigates. Several studies have investigated the linear stability property of SGD in the vicinity of a stationary point as a predictive proxy for sharpness and generalization error in overparameterized neural networks (Wu et al., 2022; Jastrzebski et al., 2019; Cohen et al., 2021). In this paper, we delve deeper into the relationship between linear stability and sharpness. More specifically, we meticulously delineate the necessary and sufficient conditions for linear stability, contingent on hyperparameters of SGD and the sharpness at the optimum. Towards this end, we introduce a novel coherence measure of the loss Hessian that encapsulates pertinent geometric properties of the loss function that are relevant to the linear stability of SGD. It enables us to provide a simplified sufficient condition for identifying linear instability at an optimum. Notably, compared to previous works, our analysis relies on significantly milder assumptions and is applicable for a broader class of loss functions than known before, encompassing not only mean-squared error but also cross-entropy loss.
Estimation Beyond Data Reweighting: Kernel Method of Moments
Moment restrictions and their conditional counterparts emerge in many areas of machine learning and statistics ranging from causal inference to reinforcement learning. Estimators for these tasks, generally called methods of moments, include the prominent generalized method of moments (GMM) which has recently gained attention in causal inference. GMM is a special case of the broader family of empirical likelihood estimators which are based on approximating a population distribution by means of minimizing a varphi-divergence to an empirical distribution. However, the use of varphi-divergences effectively limits the candidate distributions to reweightings of the data samples. We lift this long-standing limitation and provide a method of moments that goes beyond data reweighting. This is achieved by defining an empirical likelihood estimator based on maximum mean discrepancy which we term the kernel method of moments (KMM). We provide a variant of our estimator for conditional moment restrictions and show that it is asymptotically first-order optimal for such problems. Finally, we show that our method achieves competitive performance on several conditional moment restriction tasks.
Let's Make Block Coordinate Descent Converge Faster: Faster Greedy Rules, Message-Passing, Active-Set Complexity, and Superlinear Convergence
Block coordinate descent (BCD) methods are widely used for large-scale numerical optimization because of their cheap iteration costs, low memory requirements, amenability to parallelization, and ability to exploit problem structure. Three main algorithmic choices influence the performance of BCD methods: the block partitioning strategy, the block selection rule, and the block update rule. In this paper we explore all three of these building blocks and propose variations for each that can significantly improve the progress made by each BCD iteration. We (i) propose new greedy block-selection strategies that guarantee more progress per iteration than the Gauss-Southwell rule; (ii) explore practical issues like how to implement the new rules when using "variable" blocks; (iii) explore the use of message-passing to compute matrix or Newton updates efficiently on huge blocks for problems with sparse dependencies between variables; and (iv) consider optimal active manifold identification, which leads to bounds on the "active-set complexity" of BCD methods and leads to superlinear convergence for certain problems with sparse solutions (and in some cases finite termination at an optimal solution). We support all of our findings with numerical results for the classic machine learning problems of least squares, logistic regression, multi-class logistic regression, label propagation, and L1-regularization.
Differentiability and Optimization of Multiparameter Persistent Homology
Real-valued functions on geometric data -- such as node attributes on a graph -- can be optimized using descriptors from persistent homology, allowing the user to incorporate topological terms in the loss function. When optimizing a single real-valued function (the one-parameter setting), there is a canonical choice of descriptor for persistent homology: the barcode. The operation mapping a real-valued function to its barcode is differentiable almost everywhere, and the convergence of gradient descent for losses using barcodes is relatively well understood. When optimizing a vector-valued function (the multiparameter setting), there is no unique choice of descriptor for multiparameter persistent homology, and many distinct descriptors have been proposed. This calls for the development of a general framework for differentiability and optimization that applies to a wide range of multiparameter homological descriptors. In this article, we develop such a framework and show that it encompasses well-known descriptors of different flavors, such as signed barcodes and the multiparameter persistence landscape. We complement the theory with numerical experiments supporting the idea that optimizing multiparameter homological descriptors can lead to improved performances compared to optimizing one-parameter descriptors, even when using the simplest and most efficiently computable multiparameter descriptors.
Proper Scoring Rules for Survival Analysis
Survival analysis is the problem of estimating probability distributions for future event times, which can be seen as a problem in uncertainty quantification. Although there are fundamental theories on strictly proper scoring rules for uncertainty quantification, little is known about those for survival analysis. In this paper, we investigate extensions of four major strictly proper scoring rules for survival analysis and we prove that these extensions are proper under certain conditions, which arise from the discretization of the estimation of probability distributions. We also compare the estimation performances of these extended scoring rules by using real datasets, and the extensions of the logarithmic score and the Brier score performed the best.
A Framework for Adapting Offline Algorithms to Solve Combinatorial Multi-Armed Bandit Problems with Bandit Feedback
We investigate the problem of stochastic, combinatorial multi-armed bandits where the learner only has access to bandit feedback and the reward function can be non-linear. We provide a general framework for adapting discrete offline approximation algorithms into sublinear alpha-regret methods that only require bandit feedback, achieving Oleft(T^2{3}log(T)^1{3}right) expected cumulative alpha-regret dependence on the horizon T. The framework only requires the offline algorithms to be robust to small errors in function evaluation. The adaptation procedure does not even require explicit knowledge of the offline approximation algorithm -- the offline algorithm can be used as black box subroutine. To demonstrate the utility of the proposed framework, the proposed framework is applied to multiple problems in submodular maximization, adapting approximation algorithms for cardinality and for knapsack constraints. The new CMAB algorithms for knapsack constraints outperform a full-bandit method developed for the adversarial setting in experiments with real-world data.
Learning to Reason with Neural Networks: Generalization, Unseen Data and Boolean Measures
This paper considers the Pointer Value Retrieval (PVR) benchmark introduced in [ZRKB21], where a 'reasoning' function acts on a string of digits to produce the label. More generally, the paper considers the learning of logical functions with gradient descent (GD) on neural networks. It is first shown that in order to learn logical functions with gradient descent on symmetric neural networks, the generalization error can be lower-bounded in terms of the noise-stability of the target function, supporting a conjecture made in [ZRKB21]. It is then shown that in the distribution shift setting, when the data withholding corresponds to freezing a single feature (referred to as canonical holdout), the generalization error of gradient descent admits a tight characterization in terms of the Boolean influence for several relevant architectures. This is shown on linear models and supported experimentally on other models such as MLPs and Transformers. In particular, this puts forward the hypothesis that for such architectures and for learning logical functions such as PVR functions, GD tends to have an implicit bias towards low-degree representations, which in turn gives the Boolean influence for the generalization error under quadratic loss.
An Informal Introduction to Multiplet Neural Networks
In the artificial neuron, I replace the dot product with the weighted Lehmer mean, which may emulate different cases of a generalized mean. The single neuron instance is replaced by a multiplet of neurons which have the same averaging weights. A group of outputs feed forward, in lieu of the single scalar. The generalization parameter is typically set to a different value for each neuron in the multiplet. I further extend the concept to a multiplet taken from the Gini mean. Derivatives with respect to the weight parameters and with respect to the two generalization parameters are given. Some properties of the network are investigated, showing the capacity to emulate the classical exclusive-or problem organically in two layers and perform some multiplication and division. The network can instantiate truncated power series and variants, which can be used to approximate different functions, provided that parameters are constrained. Moreover, a mean case slope score is derived that can facilitate a learning-rate novelty based on homogeneity of the selected elements. The multiplet neuron equation provides a way to segment regularization timeframes and approaches.
Dynamic Constrained Submodular Optimization with Polylogarithmic Update Time
Maximizing a monotone submodular function under cardinality constraint k is a core problem in machine learning and database with many basic applications, including video and data summarization, recommendation systems, feature extraction, exemplar clustering, and coverage problems. We study this classic problem in the fully dynamic model where a stream of insertions and deletions of elements of an underlying ground set is given and the goal is to maintain an approximate solution using a fast update time. A recent paper at NeurIPS'20 by Lattanzi, Mitrovic, Norouzi{-}Fard, Tarnawski, Zadimoghaddam claims to obtain a dynamic algorithm for this problem with a 1{2} -epsilon approximation ratio and a query complexity bounded by poly(log(n),log(k),epsilon^{-1}). However, as we explain in this paper, the analysis has some important gaps. Having a dynamic algorithm for the problem with polylogarithmic update time is even more important in light of a recent result by Chen and Peng at STOC'22 who show a matching lower bound for the problem -- any randomized algorithm with a 1{2}+epsilon approximation ratio must have an amortized query complexity that is polynomial in n. In this paper, we develop a simpler algorithm for the problem that maintains a (1{2}-epsilon)-approximate solution for submodular maximization under cardinality constraint k using a polylogarithmic amortized update time.
True to the Model or True to the Data?
A variety of recent papers discuss the application of Shapley values, a concept for explaining coalitional games, for feature attribution in machine learning. However, the correct way to connect a machine learning model to a coalitional game has been a source of controversy. The two main approaches that have been proposed differ in the way that they condition on known features, using either (1) an interventional or (2) an observational conditional expectation. While previous work has argued that one of the two approaches is preferable in general, we argue that the choice is application dependent. Furthermore, we argue that the choice comes down to whether it is desirable to be true to the model or true to the data. We use linear models to investigate this choice. After deriving an efficient method for calculating observational conditional expectation Shapley values for linear models, we investigate how correlation in simulated data impacts the convergence of observational conditional expectation Shapley values. Finally, we present two real data examples that we consider to be representative of possible use cases for feature attribution -- (1) credit risk modeling and (2) biological discovery. We show how a different choice of value function performs better in each scenario, and how possible attributions are impacted by modeling choices.