Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeToward a Better Understanding of Fourier Neural Operators: Analysis and Improvement from a Spectral Perspective
In solving partial differential equations (PDEs), Fourier Neural Operators (FNOs) have exhibited notable effectiveness compared to Convolutional Neural Networks (CNNs). This paper presents clear empirical evidence through spectral analysis to elucidate the superiority of FNO over CNNs: FNO is significantly more capable of learning low-frequencies. This empirical evidence also unveils FNO's distinct low-frequency bias, which limits FNO's effectiveness in learning high-frequency information from PDE data. To tackle this challenge, we introduce SpecBoost, an ensemble learning framework that employs multiple FNOs to better capture high-frequency information. Specifically, a secondary FNO is utilized to learn the overlooked high-frequency information from the prediction residual of the initial FNO. Experiments demonstrate that SpecBoost noticeably enhances FNO's prediction accuracy on diverse PDE applications, achieving an up to 71% improvement.
Accelerating Data Generation for Neural Operators via Krylov Subspace Recycling
Learning neural operators for solving partial differential equations (PDEs) has attracted great attention due to its high inference efficiency. However, training such operators requires generating a substantial amount of labeled data, i.e., PDE problems together with their solutions. The data generation process is exceptionally time-consuming, as it involves solving numerous systems of linear equations to obtain numerical solutions to the PDEs. Many existing methods solve these systems independently without considering their inherent similarities, resulting in extremely redundant computations. To tackle this problem, we propose a novel method, namely Sorting Krylov Recycling (SKR), to boost the efficiency of solving these systems, thus significantly accelerating data generation for neural operators training. To the best of our knowledge, SKR is the first attempt to address the time-consuming nature of data generation for learning neural operators. The working horse of SKR is Krylov subspace recycling, a powerful technique for solving a series of interrelated systems by leveraging their inherent similarities. Specifically, SKR employs a sorting algorithm to arrange these systems in a sequence, where adjacent systems exhibit high similarities. Then it equips a solver with Krylov subspace recycling to solve the systems sequentially instead of independently, thus effectively enhancing the solving efficiency. Both theoretical analysis and extensive experiments demonstrate that SKR can significantly accelerate neural operator data generation, achieving a remarkable speedup of up to 13.9 times.
Operator Learning Meets Numerical Analysis: Improving Neural Networks through Iterative Methods
Deep neural networks, despite their success in numerous applications, often function without established theoretical foundations. In this paper, we bridge this gap by drawing parallels between deep learning and classical numerical analysis. By framing neural networks as operators with fixed points representing desired solutions, we develop a theoretical framework grounded in iterative methods for operator equations. Under defined conditions, we present convergence proofs based on fixed point theory. We demonstrate that popular architectures, such as diffusion models and AlphaFold, inherently employ iterative operator learning. Empirical assessments highlight that performing iterations through network operators improves performance. We also introduce an iterative graph neural network, PIGN, that further demonstrates benefits of iterations. Our work aims to enhance the understanding of deep learning by merging insights from numerical analysis, potentially guiding the design of future networks with clearer theoretical underpinnings and improved performance.
Semantic Analysis of Traffic Camera Data: Topic Signal Extraction and Anomalous Event Detection
Traffic Management Centers (TMCs) routinely use traffic cameras to provide situational awareness regarding traffic, road, and weather conditions. Camera footage is quite useful for a variety of diagnostic purposes; yet, most footage is kept for only a few days, if at all. This is largely due to the fact that currently, identification of notable footage is done via manual review by human operators---a laborious and inefficient process. In this article, we propose a semantics-oriented approach to analyzing sequential image data, and demonstrate its application for automatic detection of real-world, anomalous events in weather and traffic conditions. Our approach constructs semantic vector representations of image contents from textual labels which can be easily obtained from off-the-shelf, pretrained image labeling software. These semantic label vectors are used to construct semantic topic signals---time series representations of physical processes---using the Latent Dirichlet Allocation (LDA) topic model. By detecting anomalies in the topic signals, we identify notable footage corresponding to winter storms and anomalous traffic congestion. In validation against real-world events, anomaly detection using semantic topic signals significantly outperforms detection using any individual label signal.
Semantic Topic Analysis of Traffic Camera Images
Traffic cameras are commonly deployed monitoring components in road infrastructure networks, providing operators visual information about conditions at critical points in the network. However, human observers are often limited in their ability to process simultaneous information sources. Recent advancements in computer vision, driven by deep learning methods, have enabled general object recognition, unlocking opportunities for camera-based sensing beyond the existing human observer paradigm. In this paper, we present a Natural Language Processing (NLP)-inspired approach, entitled Bag-of-Label-Words (BoLW), for analyzing image data sets using exclusively textual labels. The BoLW model represents the data in a conventional matrix form, enabling data compression and decomposition techniques, while preserving semantic interpretability. We apply the Latent Dirichlet Allocation (LDA) topic model to decompose the label data into a small number of semantic topics. To illustrate our approach, we use freeway camera images collected from the Boston area between December 2017-January 2018. We analyze the cameras' sensitivity to weather events; identify temporal traffic patterns; and analyze the impact of infrequent events, such as the winter holidays and the "bomb cyclone" winter storm. This study demonstrates the flexibility of our approach, which allows us to analyze weather events and freeway traffic using only traffic camera image labels.
OTOv3: Automatic Architecture-Agnostic Neural Network Training and Compression from Structured Pruning to Erasing Operators
Compressing a predefined deep neural network (DNN) into a compact sub-network with competitive performance is crucial in the efficient machine learning realm. This topic spans various techniques, from structured pruning to neural architecture search, encompassing both pruning and erasing operators perspectives. Despite advancements, existing methods suffers from complex, multi-stage processes that demand substantial engineering and domain knowledge, limiting their broader applications. We introduce the third-generation Only-Train-Once (OTOv3), which first automatically trains and compresses a general DNN through pruning and erasing operations, creating a compact and competitive sub-network without the need of fine-tuning. OTOv3 simplifies and automates the training and compression process, minimizes the engineering efforts required from users. It offers key technological advancements: (i) automatic search space construction for general DNNs based on dependency graph analysis; (ii) Dual Half-Space Projected Gradient (DHSPG) and its enhanced version with hierarchical search (H2SPG) to reliably solve (hierarchical) structured sparsity problems and ensure sub-network validity; and (iii) automated sub-network construction using solutions from DHSPG/H2SPG and dependency graphs. Our empirical results demonstrate the efficacy of OTOv3 across various benchmarks in structured pruning and neural architecture search. OTOv3 produces sub-networks that match or exceed the state-of-the-arts. The source code will be available at https://github.com/tianyic/only_train_once.
Deploying Machine Learning Models to Ahead-of-Time Runtime on Edge Using MicroTVM
In the past few years, more and more AI applications have been applied to edge devices. However, models trained by data scientists with machine learning frameworks, such as PyTorch or TensorFlow, can not be seamlessly executed on edge. In this paper, we develop an end-to-end code generator parsing a pre-trained model to C source libraries for the backend using MicroTVM, a machine learning compiler framework extension addressing inference on bare metal devices. An analysis shows that specific compute-intensive operators can be easily offloaded to the dedicated accelerator with a Universal Modular Accelerator (UMA) interface, while others are processed in the CPU cores. By using the automatically generated ahead-of-time C runtime, we conduct a hand gesture recognition experiment on an ARM Cortex M4F core.
Subhomogeneous Deep Equilibrium Models
Implicit-depth neural networks have grown as powerful alternatives to traditional networks in various applications in recent years. However, these models often lack guarantees of existence and uniqueness, raising stability, performance, and reproducibility issues. In this paper, we present a new analysis of the existence and uniqueness of fixed points for implicit-depth neural networks based on the concept of subhomogeneous operators and the nonlinear Perron-Frobenius theory. Compared to previous similar analyses, our theory allows for weaker assumptions on the parameter matrices, thus yielding a more flexible framework for well-defined implicit networks. We illustrate the performance of the resulting subhomogeneous networks on feedforward, convolutional, and graph neural network examples.
Attacks Against Security Context in 5G Network
The security context used in 5G authentication is generated during the Authentication and Key Agreement (AKA) procedure and stored in both the user equipment (UE) and the network sides for the subsequent fast registration procedure. Given its importance, it is imperative to formally analyze the security mechanism of the security context. The security context in the UE can be stored in the Universal Subscriber Identity Module (USIM) card or in the baseband chip. In this work, we present a comprehensive and formal verification of the fast registration procedure based on the security context under the two scenarios in ProVerif. Our analysis identifies two vulnerabilities, including one that has not been reported before. Specifically, the security context stored in the USIM card can be read illegally, and the validity checking mechanism of the security context in the baseband chip can be bypassed. Moreover, these vulnerabilities also apply to 4G networks. As a consequence, an attacker can exploit these vulnerabilities to register to the network with the victim's identity and then launch other attacks, including one-tap authentication bypass leading to privacy disclosure, location spoofing, etc. To ensure that these attacks are indeed realizable in practice, we have responsibly confirmed them through experimentation in three operators. Our analysis reveals that these vulnerabilities stem from design flaws of the standard and unsafe practices by operators. We finally propose several potential countermeasures to prevent these attacks. We have reported our findings to the GSMA and received a coordinated vulnerability disclosure (CVD) number CVD-2022-0057.
Mixture of Experts Soften the Curse of Dimensionality in Operator Learning
In this paper, we construct a mixture of neural operators (MoNOs) between function spaces whose complexity is distributed over a network of expert neural operators (NOs), with each NO satisfying parameter scaling restrictions. Our main result is a distributed universal approximation theorem guaranteeing that any Lipschitz non-linear operator between L^2([0,1]^d) spaces can be approximated uniformly over the Sobolev unit ball therein, to any given varepsilon>0 accuracy, by an MoNO while satisfying the constraint that: each expert NO has a depth, width, and rank of O(varepsilon^{-1}). Naturally, our result implies that the required number of experts must be large, however, each NO is guaranteed to be small enough to be loadable into the active memory of most computers for reasonable accuracies varepsilon. During our analysis, we also obtain new quantitative expression rates for classical NOs approximating uniformly continuous non-linear operators uniformly on compact subsets of L^2([0,1]^d).
Limits and Powers of Koopman Learning
Dynamical systems provide a comprehensive way to study complex and changing behaviors across various sciences. Many modern systems are too complicated to analyze directly or we do not have access to models, driving significant interest in learning methods. Koopman operators have emerged as a dominant approach because they allow the study of nonlinear dynamics using linear techniques by solving an infinite-dimensional spectral problem. However, current algorithms face challenges such as lack of convergence, hindering practical progress. This paper addresses a fundamental open question: When can we robustly learn the spectral properties of Koopman operators from trajectory data of dynamical systems, and when can we not? Understanding these boundaries is crucial for analysis, applications, and designing algorithms. We establish a foundational approach that combines computational analysis and ergodic theory, revealing the first fundamental barriers -- universal for any algorithm -- associated with system geometry and complexity, regardless of data quality and quantity. For instance, we demonstrate well-behaved smooth dynamical systems on tori where non-trivial eigenfunctions of the Koopman operator cannot be determined by any sequence of (even randomized) algorithms, even with unlimited training data. Additionally, we identify when learning is possible and introduce optimal algorithms with verification that overcome issues in standard methods. These results pave the way for a sharp classification theory of data-driven dynamical systems based on how many limits are needed to solve a problem. These limits characterize all previous methods, presenting a unified view. Our framework systematically determines when and how Koopman spectral properties can be learned.
Dissecting the Runtime Performance of the Training, Fine-tuning, and Inference of Large Language Models
Large Language Models (LLMs) have seen great advance in both academia and industry, and their popularity results in numerous open-source frameworks and techniques in accelerating LLM pre-training, fine-tuning, and inference. Training and deploying LLMs are expensive as it requires considerable computing resources and memory, hence many efficient approaches have been developed for improving system pipelines as well as operators. However, the runtime performance can vary significantly across hardware and software stacks, which makes it difficult to choose the best configuration. In this work, we aim to benchmark the performance from both macro and micro perspectives. First, we benchmark the end-to-end performance of pre-training, fine-tuning, and serving LLMs in different sizes , i.e., 7, 13, and 70 billion parameters (7B, 13B, and 70B) on three 8-GPU platforms with and without individual optimization techniques, including ZeRO, quantization, recomputation, FlashAttention. Then, we dive deeper to provide a detailed runtime analysis of the sub-modules, including computing and communication operators in LLMs. For end users, our benchmark and findings help better understand different optimization techniques, training and inference frameworks, together with hardware platforms in choosing configurations for deploying LLMs. For researchers, our in-depth module-wise analyses discover potential opportunities for future work to further optimize the runtime performance of LLMs.
Solving High-Dimensional PDEs with Latent Spectral Models
Deep models have achieved impressive progress in solving partial differential equations (PDEs). A burgeoning paradigm is learning neural operators to approximate the input-output mappings of PDEs. While previous deep models have explored the multiscale architectures and various operator designs, they are limited to learning the operators as a whole in the coordinate space. In real physical science problems, PDEs are complex coupled equations with numerical solvers relying on discretization into high-dimensional coordinate space, which cannot be precisely approximated by a single operator nor efficiently learned due to the curse of dimensionality. We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs. Going beyond the coordinate space, LSM enables an attention-based hierarchical projection network to reduce the high-dimensional data into a compact latent space in linear time. Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space that approximates complex input-output mappings via learning multiple basis operators, enjoying nice theoretical guarantees for convergence and approximation. Experimentally, LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks covering both solid and fluid physics. Code is available at https://github.com/thuml/Latent-Spectral-Models.
Bregman Proximal Langevin Monte Carlo via Bregman--Moreau Envelopes
We propose efficient Langevin Monte Carlo algorithms for sampling distributions with nonsmooth convex composite potentials, which is the sum of a continuously differentiable function and a possibly nonsmooth function. We devise such algorithms leveraging recent advances in convex analysis and optimization methods involving Bregman divergences, namely the Bregman--Moreau envelopes and the Bregman proximity operators, and in the Langevin Monte Carlo algorithms reminiscent of mirror descent. The proposed algorithms extend existing Langevin Monte Carlo algorithms in two aspects -- the ability to sample nonsmooth distributions with mirror descent-like algorithms, and the use of the more general Bregman--Moreau envelope in place of the Moreau envelope as a smooth approximation of the nonsmooth part of the potential. A particular case of the proposed scheme is reminiscent of the Bregman proximal gradient algorithm. The efficiency of the proposed methodology is illustrated with various sampling tasks at which existing Langevin Monte Carlo methods are known to perform poorly.
PowerInfer: Fast Large Language Model Serving with a Consumer-grade GPU
This paper introduces PowerInfer, a high-speed Large Language Model (LLM) inference engine on a personal computer (PC) equipped with a single consumer-grade GPU. The key underlying the design of PowerInfer is exploiting the high locality inherent in LLM inference, characterized by a power-law distribution in neuron activation. This distribution indicates that a small subset of neurons, termed hot neurons, are consistently activated across inputs, while the majority, cold neurons, vary based on specific inputs. PowerInfer exploits such an insight to design a GPU-CPU hybrid inference engine: hot-activated neurons are preloaded onto the GPU for fast access, while cold-activated neurons are computed on the CPU, thus significantly reducing GPU memory demands and CPU-GPU data transfers. PowerInfer further integrates adaptive predictors and neuron-aware sparse operators, optimizing the efficiency of neuron activation and computational sparsity. Evaluation shows that PowerInfer attains an average token generation rate of 13.20 tokens/s, with a peak of 29.08 tokens/s, across various LLMs (including OPT-175B) on a single NVIDIA RTX 4090 GPU, only 18% lower than that achieved by a top-tier server-grade A100 GPU. This significantly outperforms llama.cpp by up to 11.69x while retaining model accuracy.
Data-Juicer 2.0: Cloud-Scale Adaptive Data Processing for and with Foundation Models
The burgeoning field of foundation models necessitates advanced data processing mechanisms capable of harnessing vast and valuable data with various types used by these models. Nevertheless, the current landscape presents unique challenges that traditional data processing frameworks struggle to handle effectively, particularly in handling the complexity of multimodal data. In response, we present Data-Juicer 2.0, a data processing system backed by 100+ data processing operators spanning text, image, video, and audio modalities, supporting more critical tasks including data analysis, synthesis, annotation, and foundation model post-training. With seamless compatibility and dedicated optimization for popular dataset hubs like Hugging Face and computing engines like Ray, it improves upon its predecessor in terms of usability, efficiency, and programmability. It features an easily accessible user interface layer that supports decoupled Python interactions, RESTful APIs, and conversational commands. It contains a new runtime layer optimized for adaptive execution and management across varying dataset scales, processing demands, and computational environments, while hiding unnecessary system details. Extensive empirical evaluations demonstrate Data-Juicer 2.0's remarkable performance and scalability, highlighting its capability to efficiently process TB-level data with 10k+ CPU cores. The system is publicly available and has been widely adopted in diverse research fields and real-world products such as Alibaba Cloud PAI. We actively maintain it and share insights from practical feedback, with the goal of facilitating research and application of next-generation foundation models.
Principled Approaches for Extending Neural Architectures to Function Spaces for Operator Learning
A wide range of scientific problems, such as those described by continuous-time dynamical systems and partial differential equations (PDEs), are naturally formulated on function spaces. While function spaces are typically infinite-dimensional, deep learning has predominantly advanced through applications in computer vision and natural language processing that focus on mappings between finite-dimensional spaces. Such fundamental disparities in the nature of the data have limited neural networks from achieving a comparable level of success in scientific applications as seen in other fields. Neural operators are a principled way to generalize neural networks to mappings between function spaces, offering a pathway to replicate deep learning's transformative impact on scientific problems. For instance, neural operators can learn solution operators for entire classes of PDEs, e.g., physical systems with different boundary conditions, coefficient functions, and geometries. A key factor in deep learning's success has been the careful engineering of neural architectures through extensive empirical testing. Translating these neural architectures into neural operators allows operator learning to enjoy these same empirical optimizations. However, prior neural operator architectures have often been introduced as standalone models, not directly derived as extensions of existing neural network architectures. In this paper, we identify and distill the key principles for constructing practical implementations of mappings between infinite-dimensional function spaces. Using these principles, we propose a recipe for converting several popular neural architectures into neural operators with minimal modifications. This paper aims to guide practitioners through this process and details the steps to make neural operators work in practice. Our code can be found at https://github.com/neuraloperator/NNs-to-NOs
MgNO: Efficient Parameterization of Linear Operators via Multigrid
In this work, we propose a concise neural operator architecture for operator learning. Drawing an analogy with a conventional fully connected neural network, we define the neural operator as follows: the output of the i-th neuron in a nonlinear operator layer is defined by mathcal O_i(u) = sigmaleft( sum_j mathcal W_{ij} u + mathcal B_{ij}right). Here, mathcal W_{ij} denotes the bounded linear operator connecting j-th input neuron to i-th output neuron, and the bias mathcal B_{ij} takes the form of a function rather than a scalar. Given its new universal approximation property, the efficient parameterization of the bounded linear operators between two neurons (Banach spaces) plays a critical role. As a result, we introduce MgNO, utilizing multigrid structures to parameterize these linear operators between neurons. This approach offers both mathematical rigor and practical expressivity. Additionally, MgNO obviates the need for conventional lifting and projecting operators typically required in previous neural operators. Moreover, it seamlessly accommodates diverse boundary conditions. Our empirical observations reveal that MgNO exhibits superior ease of training compared to other CNN-based models, while also displaying a reduced susceptibility to overfitting when contrasted with spectral-type neural operators. We demonstrate the efficiency and accuracy of our method with consistently state-of-the-art performance on different types of partial differential equations (PDEs).
On the Anatomy of Real-World R Code for Static Analysis
CONTEXT The R programming language has a huge and active community, especially in the area of statistical computing. Its interpreted nature allows for several interesting constructs, like the manipulation of functions at run-time, that hinder the static analysis of R programs. At the same time, there is a lack of existing research regarding how these features, or even the R language as a whole are used in practice. OBJECTIVE In this paper, we conduct a large-scale, static analysis of more than 50 million lines of real-world R programs and packages to identify their characteristics and the features that are actually used. Moreover, we compare the similarities and differences between the scripts of R users and the implementations of package authors. We provide insights for static analysis tools like the lintr package as well as potential interpreter optimizations and uncover areas for future research. METHOD We analyze 4230 R scripts submitted alongside publications and the sources of 19450 CRAN packages for over 350000 R files, collecting and summarizing quantitative information for features of interest. RESULTS We find a high frequency of name-based indexing operations, assignments, and loops, but a low frequency for most of R's reflective functions. Furthermore, we find neither testing functions nor many calls to R's foreign function interface (FFI) in the publication submissions. CONCLUSION R scripts and package sources differ, for example, in their size, the way they include other packages, and their usage of R's reflective capabilities. We provide features that are used frequently and should be prioritized by static analysis tools, like operator assignments, function calls, and certain reflective functions like load.
Towards Stability of Autoregressive Neural Operators
Neural operators have proven to be a promising approach for modeling spatiotemporal systems in the physical sciences. However, training these models for large systems can be quite challenging as they incur significant computational and memory expense -- these systems are often forced to rely on autoregressive time-stepping of the neural network to predict future temporal states. While this is effective in managing costs, it can lead to uncontrolled error growth over time and eventual instability. We analyze the sources of this autoregressive error growth using prototypical neural operator models for physical systems and explore ways to mitigate it. We introduce architectural and application-specific improvements that allow for careful control of instability-inducing operations within these models without inflating the compute/memory expense. We present results on several scientific systems that include Navier-Stokes fluid flow, rotating shallow water, and a high-resolution global weather forecasting system. We demonstrate that applying our design principles to neural operators leads to significantly lower errors for long-term forecasts as well as longer time horizons without qualitative signs of divergence compared to the original models for these systems. We open-source our https://github.com/mikemccabe210/stabilizing_neural_operators{code} for reproducibility.
DecompX: Explaining Transformers Decisions by Propagating Token Decomposition
An emerging solution for explaining Transformer-based models is to use vector-based analysis on how the representations are formed. However, providing a faithful vector-based explanation for a multi-layer model could be challenging in three aspects: (1) Incorporating all components into the analysis, (2) Aggregating the layer dynamics to determine the information flow and mixture throughout the entire model, and (3) Identifying the connection between the vector-based analysis and the model's predictions. In this paper, we present DecompX to tackle these challenges. DecompX is based on the construction of decomposed token representations and their successive propagation throughout the model without mixing them in between layers. Additionally, our proposal provides multiple advantages over existing solutions for its inclusion of all encoder components (especially nonlinear feed-forward networks) and the classification head. The former allows acquiring precise vectors while the latter transforms the decomposition into meaningful prediction-based values, eliminating the need for norm- or summation-based vector aggregation. According to the standard faithfulness evaluations, DecompX consistently outperforms existing gradient-based and vector-based approaches on various datasets. Our code is available at https://github.com/mohsenfayyaz/DecompX.
An operator preconditioning perspective on training in physics-informed machine learning
In this paper, we investigate the behavior of gradient descent algorithms in physics-informed machine learning methods like PINNs, which minimize residuals connected to partial differential equations (PDEs). Our key result is that the difficulty in training these models is closely related to the conditioning of a specific differential operator. This operator, in turn, is associated to the Hermitian square of the differential operator of the underlying PDE. If this operator is ill-conditioned, it results in slow or infeasible training. Therefore, preconditioning this operator is crucial. We employ both rigorous mathematical analysis and empirical evaluations to investigate various strategies, explaining how they better condition this critical operator, and consequently improve training.
GNOT: A General Neural Operator Transformer for Operator Learning
Learning partial differential equations' (PDEs) solution operators is an essential problem in machine learning. However, there are several challenges for learning operators in practical applications like the irregular mesh, multiple input functions, and complexity of the PDEs' solution. To address these challenges, we propose a general neural operator transformer (GNOT), a scalable and effective transformer-based framework for learning operators. By designing a novel heterogeneous normalized attention layer, our model is highly flexible to handle multiple input functions and irregular meshes. Besides, we introduce a geometric gating mechanism which could be viewed as a soft domain decomposition to solve the multi-scale problems. The large model capacity of the transformer architecture grants our model the possibility to scale to large datasets and practical problems. We conduct extensive experiments on multiple challenging datasets from different domains and achieve a remarkable improvement compared with alternative methods. Our code and data are publicly available at https://github.com/thu-ml/GNOT.
Sonnet: Spectral Operator Neural Network for Multivariable Time Series Forecasting
Multivariable time series forecasting methods can integrate information from exogenous variables, leading to significant prediction accuracy gains. Transformer architecture has been widely applied in various time series forecasting models due to its ability to capture long-range sequential dependencies. However, a na\"ive application of transformers often struggles to effectively model complex relationships among variables over time. To mitigate against this, we propose a novel architecture, namely the Spectral Operator Neural Network (Sonnet). Sonnet applies learnable wavelet transformations to the input and incorporates spectral analysis using the Koopman operator. Its predictive skill relies on the Multivariable Coherence Attention (MVCA), an operation that leverages spectral coherence to model variable dependencies. Our empirical analysis shows that Sonnet yields the best performance on 34 out of 47 forecasting tasks with an average mean absolute error (MAE) reduction of 1.1% against the most competitive baseline (different per task). We further show that MVCA -- when put in place of the na\"ive attention used in various deep learning models -- can remedy its deficiencies, reducing MAE by 10.7% on average in the most challenging forecasting tasks.
IterLara: A Turing Complete Algebra for Big Data, AI, Scientific Computing, and Database
Lara is a key-value algebra that aims at unifying linear and relational algebra with three types of operation abstraction. The study of Lara's expressive ability reports that it can represent relational algebra and most linear algebra operations. However, several essential computations, such as matrix inversion and determinant, cannot be expressed in Lara. Lara cannot represent global and iterative computation, either. This article proposes IterLara, extending Lara with iterative operators, to provide an algebraic model that unifies operations in general-purpose computing, like big data, AI, scientific computing, and database. We study the expressive ability of Lara and IterLara and prove that IterLara with aggregation functions can represent matrix inversion, determinant. Besides, we demonstrate that IterLara with no limitation of function utility is Turing complete. We also propose the Operation Count (OP) as a metric of computation amount for IterLara and ensure that the OP metric is in accordance with the existing computation metrics.
Neural Operator: Learning Maps Between Function Spaces
The classical development of neural networks has primarily focused on learning mappings between finite dimensional Euclidean spaces or finite sets. We propose a generalization of neural networks to learn operators, termed neural operators, that map between infinite dimensional function spaces. We formulate the neural operator as a composition of linear integral operators and nonlinear activation functions. We prove a universal approximation theorem for our proposed neural operator, showing that it can approximate any given nonlinear continuous operator. The proposed neural operators are also discretization-invariant, i.e., they share the same model parameters among different discretization of the underlying function spaces. Furthermore, we introduce four classes of efficient parameterization, viz., graph neural operators, multi-pole graph neural operators, low-rank neural operators, and Fourier neural operators. An important application for neural operators is learning surrogate maps for the solution operators of partial differential equations (PDEs). We consider standard PDEs such as the Burgers, Darcy subsurface flow, and the Navier-Stokes equations, and show that the proposed neural operators have superior performance compared to existing machine learning based methodologies, while being several orders of magnitude faster than conventional PDE solvers.
Neural Inverse Operators for Solving PDE Inverse Problems
A large class of inverse problems for PDEs are only well-defined as mappings from operators to functions. Existing operator learning frameworks map functions to functions and need to be modified to learn inverse maps from data. We propose a novel architecture termed Neural Inverse Operators (NIOs) to solve these PDE inverse problems. Motivated by the underlying mathematical structure, NIO is based on a suitable composition of DeepONets and FNOs to approximate mappings from operators to functions. A variety of experiments are presented to demonstrate that NIOs significantly outperform baselines and solve PDE inverse problems robustly, accurately and are several orders of magnitude faster than existing direct and PDE-constrained optimization methods.
TorchXRayVision: A library of chest X-ray datasets and models
TorchXRayVision is an open source software library for working with chest X-ray datasets and deep learning models. It provides a common interface and common pre-processing chain for a wide set of publicly available chest X-ray datasets. In addition, a number of classification and representation learning models with different architectures, trained on different data combinations, are available through the library to serve as baselines or feature extractors.
Generalized Convolution and Efficient Language Recognition
Convolution is a broadly useful operation with applications including signal processing, machine learning, probability, optics, polynomial multiplication, and efficient parsing. Usually, however, this operation is understood and implemented in more specialized forms, hiding commonalities and limiting usefulness. This paper formulates convolution in the common algebraic framework of semirings and semimodules and populates that framework with various representation types. One of those types is the grand abstract template and itself generalizes to the free semimodule monad. Other representations serve varied uses and performance trade-offs, with implementations calculated from simple and regular specifications. Of particular interest is Brzozowski's method for regular expression matching. Uncovering the method's essence frees it from syntactic manipulations, while generalizing from boolean to weighted membership (such as multisets and probability distributions) and from sets to n-ary relations. The classic trie data structure then provides an elegant and efficient alternative to syntax. Pleasantly, polynomial arithmetic requires no additional implementation effort, works correctly with a variety of representations, and handles multivariate polynomials and power series with ease. Image convolution also falls out as a special case.
Separating common from salient patterns with Contrastive Representation Learning
Contrastive Analysis is a sub-field of Representation Learning that aims at separating common factors of variation between two datasets, a background (i.e., healthy subjects) and a target (i.e., diseased subjects), from the salient factors of variation, only present in the target dataset. Despite their relevance, current models based on Variational Auto-Encoders have shown poor performance in learning semantically-expressive representations. On the other hand, Contrastive Representation Learning has shown tremendous performance leaps in various applications (classification, clustering, etc.). In this work, we propose to leverage the ability of Contrastive Learning to learn semantically expressive representations well adapted for Contrastive Analysis. We reformulate it under the lens of the InfoMax Principle and identify two Mutual Information terms to maximize and one to minimize. We decompose the first two terms into an Alignment and a Uniformity term, as commonly done in Contrastive Learning. Then, we motivate a novel Mutual Information minimization strategy to prevent information leakage between common and salient distributions. We validate our method, called SepCLR, on three visual datasets and three medical datasets, specifically conceived to assess the pattern separation capability in Contrastive Analysis. Code available at https://github.com/neurospin-projects/2024_rlouiset_sep_clr.
Azimuth: Systematic Error Analysis for Text Classification
We present Azimuth, an open-source and easy-to-use tool to perform error analysis for text classification. Compared to other stages of the ML development cycle, such as model training and hyper-parameter tuning, the process and tooling for the error analysis stage are less mature. However, this stage is critical for the development of reliable and trustworthy AI systems. To make error analysis more systematic, we propose an approach comprising dataset analysis and model quality assessment, which Azimuth facilitates. We aim to help AI practitioners discover and address areas where the model does not generalize by leveraging and integrating a range of ML techniques, such as saliency maps, similarity, uncertainty, and behavioral analyses, all in one tool. Our code and documentation are available at github.com/servicenow/azimuth.
Shapley Based Residual Decomposition for Instance Analysis
In this paper, we introduce the idea of decomposing the residuals of regression with respect to the data instances instead of features. This allows us to determine the effects of each individual instance on the model and each other, and in doing so makes for a model-agnostic method of identifying instances of interest. In doing so, we can also determine the appropriateness of the model and data in the wider context of a given study. The paper focuses on the possible applications that such a framework brings to the relatively unexplored field of instance analysis in the context of Explainable AI tasks.
Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl
PySR is an open-source library for practical symbolic regression, a type of machine learning which aims to discover human-interpretable symbolic models. PySR was developed to democratize and popularize symbolic regression for the sciences, and is built on a high-performance distributed back-end, a flexible search algorithm, and interfaces with several deep learning packages. PySR's internal search algorithm is a multi-population evolutionary algorithm, which consists of a unique evolve-simplify-optimize loop, designed for optimization of unknown scalar constants in newly-discovered empirical expressions. PySR's backend is the extremely optimized Julia library SymbolicRegression.jl, which can be used directly from Julia. It is capable of fusing user-defined operators into SIMD kernels at runtime, performing automatic differentiation, and distributing populations of expressions to thousands of cores across a cluster. In describing this software, we also introduce a new benchmark, "EmpiricalBench," to quantify the applicability of symbolic regression algorithms in science. This benchmark measures recovery of historical empirical equations from original and synthetic datasets.
PSIMiner: A Tool for Mining Rich Abstract Syntax Trees from Code
The application of machine learning algorithms to source code has grown in the past years. Since these algorithms are quite sensitive to input data, it is not surprising that researchers experiment with input representations. Nowadays, a popular starting point to represent code is abstract syntax trees (ASTs). Abstract syntax trees have been used for a long time in various software engineering domains, and in particular in IDEs. The API of modern IDEs allows to manipulate and traverse ASTs, resolve references between code elements, etc. Such algorithms can enrich ASTs with new data and therefore may be useful in ML-based code analysis. In this work, we present PSIMiner - a tool for processing PSI trees from the IntelliJ Platform. PSI trees contain code syntax trees as well as functions to work with them, and therefore can be used to enrich code representation using static analysis algorithms of modern IDEs. To showcase this idea, we use our tool to infer types of identifiers in Java ASTs and extend the code2seq model for the method name prediction problem.
NESTLE: a No-Code Tool for Statistical Analysis of Legal Corpus
The statistical analysis of large scale legal corpus can provide valuable legal insights. For such analysis one needs to (1) select a subset of the corpus using document retrieval tools, (2) structuralize text using information extraction (IE) systems, and (3) visualize the data for the statistical analysis. Each process demands either specialized tools or programming skills whereas no comprehensive unified "no-code" tools have been available. Especially for IE, if the target information is not predefined in the ontology of the IE system, one needs to build their own system. Here we provide NESTLE, a no code tool for large-scale statistical analysis of legal corpus. With NESTLE, users can search target documents, extract information, and visualize the structured data all via the chat interface with accompanying auxiliary GUI for the fine-level control. NESTLE consists of three main components: a search engine, an end-to-end IE system, and a Large Language Model (LLM) that glues the whole components together and provides the chat interface. Powered by LLM and the end-to-end IE system, NESTLE can extract any type of information that has not been predefined in the IE system opening up the possibility of unlimited customizable statistical analysis of the corpus without writing a single line of code. The use of the custom end-to-end IE system also enables faster and low-cost IE on large scale corpus. We validate our system on 15 Korean precedent IE tasks and 3 legal text classification tasks from LEXGLUE. The comprehensive experiments reveal NESTLE can achieve GPT-4 comparable performance by training the internal IE module with 4 human-labeled, and 192 LLM-labeled examples. The detailed analysis provides the insight on the trade-off between accuracy, time, and cost in building such system.
A Tool for In-depth Analysis of Code Execution Reasoning of Large Language Models
Code Executing Reasoning is becoming a new non-functional metric that assesses the ability of large language models (LLMs) in programming tasks. State-of-the-art frameworks (CodeMind or REval) and benchmarks (CruxEval) usually focus on LLM's prediction of a given code's input/output or intermediate variable states/values on limited programs. However, there is no tool for more in-depth analysis of the results. Without such a tool, the observations about LLM's code execution reasoning cannot be generalized to more datasets, preventing the research community and practitioners from devising the next generation of LLMs with better code execution reasoning abilities. This paper introduces ExeRScope, a series of tools and heuristics to analyze the result of code execution reasoning frameworks to understand better the impact of code properties in the studied benchmarks on the code execution reasoning. With such tooling, analysis can be generalized to code with similar properties without the urgent need to design more benchmarks, which is a cumbersome effort.
LAMBDA: A Large Model Based Data Agent
We introduce ``LAMBDA," a novel open-source, code-free multi-agent data analysis system that that harnesses the power of large models. LAMBDA is designed to address data analysis challenges in complex data-driven applications through the use of innovatively designed data agents that operate iteratively and generatively using natural language. At the core of LAMBDA are two key agent roles: the programmer and the inspector, which are engineered to work together seamlessly. Specifically, the programmer generates code based on the user's instructions and domain-specific knowledge, enhanced by advanced models. Meanwhile, the inspector debugs the code when necessary. To ensure robustness and handle adverse scenarios, LAMBDA features a user interface that allows direct user intervention in the operational loop. Additionally, LAMBDA can flexibly integrate external models and algorithms through our knowledge integration mechanism, catering to the needs of customized data analysis. LAMBDA has demonstrated strong performance on various machine learning datasets. It has the potential to enhance data science practice and analysis paradigm by seamlessly integrating human and artificial intelligence, making it more accessible, effective, and efficient for individuals from diverse backgrounds. The strong performance of LAMBDA in solving data science problems is demonstrated in several case studies, which are presented at https://www.polyu.edu.hk/ama/cmfai/lambda.html.
Reinforced Approximate Exploratory Data Analysis
Exploratory data analytics (EDA) is a sequential decision making process where analysts choose subsequent queries that might lead to some interesting insights based on the previous queries and corresponding results. Data processing systems often execute the queries on samples to produce results with low latency. Different downsampling strategy preserves different statistics of the data and have different magnitude of latency reductions. The optimum choice of sampling strategy often depends on the particular context of the analysis flow and the hidden intent of the analyst. In this paper, we are the first to consider the impact of sampling in interactive data exploration settings as they introduce approximation errors. We propose a Deep Reinforcement Learning (DRL) based framework which can optimize the sample selection in order to keep the analysis and insight generation flow intact. Evaluations with 3 real datasets show that our technique can preserve the original insight generation flow while improving the interaction latency, compared to baseline methods.
Maximal regularity of Stokes problem with dynamic boundary condition -- Hilbert setting
For the evolutionary Stokes problem with dynamic boundary condition we show maximal regularity of weak solutions in time. Due to the characteriation of R-sectorial operators on Hilbert spaces, the proof reduces to finding the correct functional analytic setting and proving that an operator is sectorial, i.e. generates an analytic semigroup.
InsightBench: Evaluating Business Analytics Agents Through Multi-Step Insight Generation
Data analytics is essential for extracting valuable insights from data that can assist organizations in making effective decisions. We introduce InsightBench, a benchmark dataset with three key features. First, it consists of 100 datasets representing diverse business use cases such as finance and incident management, each accompanied by a carefully curated set of insights planted in the datasets. Second, unlike existing benchmarks focusing on answering single queries, InsightBench evaluates agents based on their ability to perform end-to-end data analytics, including formulating questions, interpreting answers, and generating a summary of insights and actionable steps. Third, we conducted comprehensive quality assurance to ensure that each dataset in the benchmark had clear goals and included relevant and meaningful questions and analysis. Furthermore, we implement a two-way evaluation mechanism using LLaMA-3 as an effective, open-source evaluator to assess agents' ability to extract insights. We also propose AgentPoirot, our baseline data analysis agent capable of performing end-to-end data analytics. Our evaluation on InsightBench shows that AgentPoirot outperforms existing approaches (such as Pandas Agent) that focus on resolving single queries. We also compare the performance of open- and closed-source LLMs and various evaluation strategies. Overall, this benchmark serves as a testbed to motivate further development in comprehensive automated data analytics and can be accessed here: https://github.com/ServiceNow/insight-bench.
Automatic Functional Differentiation in JAX
We extend JAX with the capability to automatically differentiate higher-order functions (functionals and operators). By representing functions as a generalization of arrays, we seamlessly use JAX's existing primitive system to implement higher-order functions. We present a set of primitive operators that serve as foundational building blocks for constructing several key types of functionals. For every introduced primitive operator, we derive and implement both linearization and transposition rules, aligning with JAX's internal protocols for forward and reverse mode automatic differentiation. This enhancement allows for functional differentiation in the same syntax traditionally use for functions. The resulting functional gradients are themselves functions ready to be invoked in python. We showcase this tool's efficacy and simplicity through applications where functional derivatives are indispensable. The source code of this work is released at https://github.com/sail-sg/autofd .
Sigma: A dataset for text-to-code semantic parsing with statistical analysis
In the domain of semantic parsing, significant progress has been achieved in Text-to-SQL and question-answering tasks, both of which focus on extracting information from data sources in their native formats. However, the inherent constraints of their formal meaning representations, such as SQL programming language or basic logical forms, hinder their ability to analyze data from various perspectives, such as conducting statistical analyses. To address this limitation and inspire research in this field, we design SIGMA, a new dataset for Text-to-Code semantic parsing with statistical analysis. SIGMA comprises 6000 questions with corresponding Python code labels, spanning across 160 databases. Half of the questions involve query types, which return information in its original format, while the remaining 50% are statistical analysis questions, which perform statistical operations on the data. The Python code labels in our dataset cover 4 types of query types and 40 types of statistical analysis patterns. We evaluated the SIGMA dataset using three different baseline models: LGESQL, SmBoP, and SLSQL. The experimental results show that the LGESQL model with ELECTRA outperforms all other models, achieving 83.37% structure accuracy. In terms of execution accuracy, the SmBoP model, when combined with GraPPa and T5, reaches 76.38%.
Sparse Autoencoders for Hypothesis Generation
We describe HypotheSAEs, a general method to hypothesize interpretable relationships between text data (e.g., headlines) and a target variable (e.g., clicks). HypotheSAEs has three steps: (1) train a sparse autoencoder on text embeddings to produce interpretable features describing the data distribution, (2) select features that predict the target variable, and (3) generate a natural language interpretation of each feature (e.g., "mentions being surprised or shocked") using an LLM. Each interpretation serves as a hypothesis about what predicts the target variable. Compared to baselines, our method better identifies reference hypotheses on synthetic datasets (at least +0.06 in F1) and produces more predictive hypotheses on real datasets (~twice as many significant findings), despite requiring 1-2 orders of magnitude less compute than recent LLM-based methods. HypotheSAEs also produces novel discoveries on two well-studied tasks: explaining partisan differences in Congressional speeches and identifying drivers of engagement with online headlines.
Choose a Transformer: Fourier or Galerkin
In this paper, we apply the self-attention from the state-of-the-art Transformer in Attention Is All You Need for the first time to a data-driven operator learning problem related to partial differential equations. An effort is put together to explain the heuristics of, and to improve the efficacy of the attention mechanism. By employing the operator approximation theory in Hilbert spaces, it is demonstrated for the first time that the softmax normalization in the scaled dot-product attention is sufficient but not necessary. Without softmax, the approximation capacity of a linearized Transformer variant can be proved to be comparable to a Petrov-Galerkin projection layer-wise, and the estimate is independent with respect to the sequence length. A new layer normalization scheme mimicking the Petrov-Galerkin projection is proposed to allow a scaling to propagate through attention layers, which helps the model achieve remarkable accuracy in operator learning tasks with unnormalized data. Finally, we present three operator learning experiments, including the viscid Burgers' equation, an interface Darcy flow, and an inverse interface coefficient identification problem. The newly proposed simple attention-based operator learner, Galerkin Transformer, shows significant improvements in both training cost and evaluation accuracy over its softmax-normalized counterparts.