- Structured information extraction from complex scientific text with fine-tuned large language models Intelligently extracting and linking complex scientific information from unstructured text is a challenging endeavor particularly for those inexperienced with natural language processing. Here, we present a simple sequence-to-sequence approach to joint named entity recognition and relation extraction for complex hierarchical information in scientific text. The approach leverages a pre-trained large language model (LLM), GPT-3, that is fine-tuned on approximately 500 pairs of prompts (inputs) and completions (outputs). Information is extracted either from single sentences or across sentences in abstracts/passages, and the output can be returned as simple English sentences or a more structured format, such as a list of JSON objects. We demonstrate that LLMs trained in this way are capable of accurately extracting useful records of complex scientific knowledge for three representative tasks in materials chemistry: linking dopants with their host materials, cataloging metal-organic frameworks, and general chemistry/phase/morphology/application information extraction. This approach represents a simple, accessible, and highly-flexible route to obtaining large databases of structured knowledge extracted from unstructured text. An online demo is available at http://www.matscholar.com/info-extraction. 8 authors · Dec 10, 2022
- Orthogonal Matrices for MBAT Vector Symbolic Architectures, and a "Soft" VSA Representation for JSON Vector Symbolic Architectures (VSAs) give a way to represent a complex object as a single fixed-length vector, so that similar objects have similar vector representations. These vector representations then become easy to use for machine learning or nearest-neighbor search. We review a previously proposed VSA method, MBAT (Matrix Binding of Additive Terms), which uses multiplication by random matrices for binding related terms. However, multiplying by such matrices introduces instabilities which can harm performance. Making the random matrices be orthogonal matrices provably fixes this problem. With respect to larger scale applications, we see how to apply MBAT vector representations for any data expressed in JSON. JSON is used in numerous programming languages to express complex data, but its native format appears highly unsuited for machine learning. Expressing JSON as a fixed-length vector makes it readily usable for machine learning and nearest-neighbor search. Creating such JSON vectors also shows that a VSA needs to employ binding operations that are non-commutative. VSAs are now ready to try with full-scale practical applications, including healthcare, pharmaceuticals, and genomics. Keywords: MBAT (Matrix Binding of Additive Terms), VSA (Vector Symbolic Architecture), HDC (Hyperdimensional Computing), Distributed Representations, Binding, Orthogonal Matrices, Recurrent Connections, Machine Learning, Search, JSON, VSA Applications 1 authors · Feb 8, 2022
- NL4DV: A Toolkit for Generating Analytic Specifications for Data Visualization from Natural Language Queries Natural language interfaces (NLIs) have shown great promise for visual data analysis, allowing people to flexibly specify and interact with visualizations. However, developing visualization NLIs remains a challenging task, requiring low-level implementation of natural language processing (NLP) techniques as well as knowledge of visual analytic tasks and visualization design. We present NL4DV, a toolkit for natural language-driven data visualization. NL4DV is a Python package that takes as input a tabular dataset and a natural language query about that dataset. In response, the toolkit returns an analytic specification modeled as a JSON object containing data attributes, analytic tasks, and a list of Vega-Lite specifications relevant to the input query. In doing so, NL4DV aids visualization developers who may not have a background in NLP, enabling them to create new visualization NLIs or incorporate natural language input within their existing systems. We demonstrate NL4DV's usage and capabilities through four examples: 1) rendering visualizations using natural language in a Jupyter notebook, 2) developing a NLI to specify and edit Vega-Lite charts, 3) recreating data ambiguity widgets from the DataTone system, and 4) incorporating speech input to create a multimodal visualization system. 3 authors · Aug 24, 2020