File size: 5,755 Bytes
a8639ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np

DIM = 128
print(f"DIM IS SET TO {DIM}")

DEVICE = "mps" if torch.backends.mps.is_available() else "cpu"


class MHA_SelfAttention(nn.Module):
    def __init__(self, embed_dim=DIM, num_heads=1, *args, **kwargs):
        super().__init__(*args, **kwargs)
        if num_heads != 8:
            print(
                "Num heads is not 8. This is a reminder to change this back after experimenting with smaller architectures"
            )
        self.mha = nn.MultiheadAttention(embed_dim, num_heads)
        self.num_heads = num_heads

    def forward(self, x, mask=None, triangle_mask=False):
        # if torch.isnan(x).any():
        #     print("NAN ALERT!")
        attn_mask = None
        seq_len = x.size(1)

        if triangle_mask:
            attn_mask = torch.triu(torch.ones(seq_len, seq_len), diagonal=1) == 0
            attn_mask = attn_mask.to(x.device)

        if mask is not None:
            if attn_mask is not None:
                attn_mask = mask.unsqueeze(1) & attn_mask.unsqueeze(0)
            else:
                attn_mask = mask.unsqueeze(1).expand(-1, seq_len, -1)

        if attn_mask is not None:
            attn_mask = attn_mask.repeat(self.num_heads, 1, 1).float()
            attn_mask = attn_mask.masked_fill(
                ~attn_mask.bool(), -1e9
            )  # https://github.com/pytorch/pytorch/issues/21518 we don't talk about how long that took to know. Later it seems like they also support bool, but idk 🤷

        # print(f"attn_mask shape: {attn_mask.shape if attn_mask is not None else None}")
        # if attn_mask is not None:
        #     print(f"attn_mask stats: max={attn_mask.max()}, min={attn_mask.min()}, mean={attn_mask.mean()}")

        x = x.transpose(0, 1)
        # if torch.isnan(x).any():
        #     print("NAN ALERT!")
        attn_output, _ = self.mha(x, x, x, attn_mask=attn_mask)
        attn_output = attn_output.transpose(0, 1)
        # if torch.isnan(x).any() or torch.isinf(x).any():
        #     print("NAN ALERT!")

        # if torch.isnan(attn_output).any() or torch.isinf(attn_output).any():
        #     print("NAN or INF detected in attn_output!")
        # print(f"Output stats: max={attn_output.max()}, min={attn_output.min()}, mean={attn_output.mean()}")

        return attn_output


class FeedForward(nn.Module):
    def __init__(self, dim=DIM, hidden_dim=None, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.dim = dim
        self.hidden_dim = hidden_dim if hidden_dim is not None else dim

        self.block = nn.Sequential(
            nn.LayerNorm(self.dim),  # nobody knows what this does
            nn.Linear(self.dim, self.hidden_dim),
            nn.GELU(),
            nn.Linear(self.hidden_dim, self.dim),
            nn.GELU(),
        )

    def forward(self, x):
        return self.block(x)


class DecoderBlock(nn.Module):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.sa = MHA_SelfAttention()
        self.block = FeedForward()

        # self.drop = nn.Dropout(p=0.1)

    def forward(self, x, padding_mask=None):
        res_x = x
        x = self.sa(x, mask=padding_mask, triangle_mask=True)

        # x = self.drop(x)
        x = x + res_x

        res_x_2 = x
        x = self.block(x)
        # x = self.drop(x)
        x = x + res_x_2

        # if torch.isnan(x).any():
        #     print("NAN ALERT!")

        return x


class PositionalEncoding(nn.Module):
    def __init__(self, max_len=5000):
        super().__init__()
        position = torch.arange(0, max_len).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, DIM, 2) * -(np.log(10000.0) / DIM))
        pe = torch.zeros(max_len, DIM)
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        self.register_buffer("pe", pe.unsqueeze(0))

    def forward(self, x):
        seq_len = x.size(1)
        return x + self.pe[:, :seq_len, :].to(x.device)


class DecoderTransformer(nn.Module):
    def __init__(self, num_blocks=6, vocab_size=100, *args, **kwargs):
        super().__init__(*args, **kwargs)

        if vocab_size == 100:
            print(
                "WARNING: vocab_size is set to 100. You probably mean to set it to something else. Comment out the exit line below if this was intentional"
            )
            exit()

        self.num_blocks = num_blocks
        self.decoders = nn.ModuleList([DecoderBlock() for _ in range(num_blocks)])
        self.pos_encoding = PositionalEncoding()
        self.enc_embedding = nn.Embedding(vocab_size, DIM)

        self.oblock = nn.Sequential(
            nn.Linear(DIM, vocab_size),
            # nn.Softmax(dim=-1)
        )

        # https://github.com/hyunwoongko/transformer
        @torch.no_grad()
        def _initialize_weights(m):
            if hasattr(m, "weight") and m.weight.dim() > 1:
                nn.init.kaiming_uniform_(m.weight.data)

        self.apply(_initialize_weights)

        print(
            f"Model initialized with {sum(p.numel() for p in self.parameters() if p.requires_grad)} params."
        )

    def forward(self, x, padding_mask=None):
        # if torch.isnan(x).any():
        #     print("NAN ALERT!")
        if isinstance(x, tuple):
            x, padding_mask = x

        if padding_mask is not None:
            padding_mask = padding_mask == 0

        x = self.pos_encoding(self.enc_embedding(x))

        # if torch.isnan(x).any():
        #     print("NAN ALERT!")

        for didx, dblock in enumerate(self.decoders):

            x = dblock(x, padding_mask=padding_mask)

        x = self.oblock(x)

        return x