File size: 1,547 Bytes
459c675
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from flask import Flask, request, jsonify
import time
import ktrain

app = Flask(__name__)

predictor = ktrain.load_predictor('model/bert_model')

# worked
print(predictor.predict('I love this product!'))
print(predictor.predict('I hate this product!'))
print(predictor.predict('I am so sad!'))
print(predictor.predict('I am so happy!'))

print(predictor.predict("I am looking for a job."))
print(predictor.predict("I like to play football."))
print(predictor.predict("I am going to the beach."))
print(predictor.predict("I am going to the hospital."))
print(predictor.predict("His son is very sick."))

@app.route('/')
def index():
    response = {
        'message': 'Social Media Emotion Analysis!'
    }
    
    return jsonify(response)

@app.route('/predict-str', methods=['POST'])
def predict_message():
    data = request.json
    message = data.get('message', '')
    start_time = time.time() 
    prediction = predictor.predict(message)
    
    response = {
        'message': message,
        'prediction': prediction,
        'elapsed_time': time.time() - start_time
    }
    
    return jsonify(response)

@app.route('/predict-list', methods=['POST'])
def predict_list():
    data = request.json
    messages = data.get('messages', [])
    start_time = time.time() 
    predictions = predictor.predict(messages)
    
    response = {
        'messages': messages,
        'predictions': predictions,
        'elapsed_time': time.time() - start_time
    }
    
    return jsonify(response)



if __name__ == '__main__':
    app.run()