vector commited on
Commit
6ab2a94
·
1 Parent(s): 882c6de

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +426 -9
README.md CHANGED
@@ -1,12 +1,429 @@
1
- ## Dataset Description
2
- - **Homepage:** None (See Repository)
3
- - **Repository:** https://github.com/esdurmus/Wikilingua
4
- - **Paper:** https://www.aclweb.org/anthology/2020.findings-emnlp.360/
5
- - **Leaderboard:** N/A
6
- - **Point of Contact:** Faisal Ladhak, Esin Durmus
7
- ### Link to Main Data Card
8
- You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/wiki_lingua).
9
  ### Dataset Summary
10
  Placeholder
11
  You can load the dataset via:
12
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ### Dataset Summary
2
  Placeholder
3
  You can load the dataset via:
4
+ ```
5
+ import datasets
6
+ data = datasets.load_dataset('GEM/wiki_lingua')
7
+ ```
8
+ The data loader can be found [here](https://huggingface.co/datasets/GEM/wiki_lingua).
9
+ #### website
10
+ None (See Repository)
11
+ #### paper
12
+ https://www.aclweb.org/anthology/2020.findings-emnlp.360/
13
+ #### authors
14
+ Faisal Ladhak (Columbia University), Esin Durmus (Stanford University), Claire Cardie (Cornell University), Kathleen McKeown (Columbia University)
15
+ ## Dataset Overview
16
+ ### Where to find the Data and its Documentation
17
+ #### Webpage
18
+ <!-- info: What is the webpage for the dataset (if it exists)? -->
19
+ <!-- scope: telescope -->
20
+ None (See Repository)
21
+ #### Download
22
+ <!-- info: What is the link to where the original dataset is hosted? -->
23
+ <!-- scope: telescope -->
24
+ https://github.com/esdurmus/Wikilingua
25
+ #### Paper
26
+ <!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
27
+ <!-- scope: telescope -->
28
+ https://www.aclweb.org/anthology/2020.findings-emnlp.360/
29
+ #### BibTex
30
+ <!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
31
+ <!-- scope: microscope -->
32
+ @inproceedings{ladhak-etal-2020-wikilingua,
33
+ title = "{W}iki{L}ingua: A New Benchmark Dataset for Cross-Lingual Abstractive Summarization",
34
+ author = "Ladhak, Faisal and
35
+ Durmus, Esin and
36
+ Cardie, Claire and
37
+ McKeown, Kathleen",
38
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
39
+ month = nov,
40
+ year = "2020",
41
+ address = "Online",
42
+ publisher = "Association for Computational Linguistics",
43
+ url = "https://aclanthology.org/2020.findings-emnlp.360",
44
+ doi = "10.18653/v1/2020.findings-emnlp.360",
45
+ pages = "4034--4048",
46
+ abstract = "We introduce WikiLingua, a large-scale, multilingual dataset for the evaluation of cross-lingual abstractive summarization systems. We extract article and summary pairs in 18 languages from WikiHow, a high quality, collaborative resource of how-to guides on a diverse set of topics written by human authors. We create gold-standard article-summary alignments across languages by aligning the images that are used to describe each how-to step in an article. As a set of baselines for further studies, we evaluate the performance of existing cross-lingual abstractive summarization methods on our dataset. We further propose a method for direct cross-lingual summarization (i.e., without requiring translation at inference time) by leveraging synthetic data and Neural Machine Translation as a pre-training step. Our method significantly outperforms the baseline approaches, while being more cost efficient during inference.",
47
+ }
48
+ #### Contact Name
49
+ <!-- quick -->
50
+ <!-- info: If known, provide the name of at least one person the reader can contact for questions about the dataset. -->
51
+ <!-- scope: periscope -->
52
+ Faisal Ladhak, Esin Durmus
53
+ #### Contact Email
54
+ <!-- info: If known, provide the email of at least one person the reader can contact for questions about the dataset. -->
55
+ <!-- scope: periscope -->
56
+ faisal@cs.columbia.edu, esdurmus@stanford.edu
57
+ #### Has a Leaderboard?
58
+ <!-- info: Does the dataset have an active leaderboard? -->
59
+ <!-- scope: telescope -->
60
+ no
61
+ ### Languages and Intended Use
62
+ #### Multilingual?
63
+ <!-- quick -->
64
+ <!-- info: Is the dataset multilingual? -->
65
+ <!-- scope: telescope -->
66
+ yes
67
+ #### Covered Dialects
68
+ <!-- info: What dialects are covered? Are there multiple dialects per language? -->
69
+ <!-- scope: periscope -->
70
+ Dataset does not have multiple dialects per language.
71
+ #### Covered Languages
72
+ <!-- quick -->
73
+ <!-- info: What languages/dialects are covered in the dataset? -->
74
+ <!-- scope: telescope -->
75
+ `English`, `Spanish, Castilian`, `Portuguese`, `French`, `German`, `Russian`, `Italian`, `Indonesian`, `Dutch, Flemish`, `Arabic`, `Chinese`, `Vietnamese`, `Thai`, `Japanese`, `Korean`, `Hindi`, `Czech`, `Turkish`
76
+ #### Whose Language?
77
+ <!-- info: Whose language is in the dataset? -->
78
+ <!-- scope: periscope -->
79
+ No information about the user demographic is available.
80
+ #### License
81
+ <!-- quick -->
82
+ <!-- info: What is the license of the dataset? -->
83
+ <!-- scope: telescope -->
84
+ cc-by-3.0: Creative Commons Attribution 3.0 Unported
85
+ #### Intended Use
86
+ <!-- info: What is the intended use of the dataset? -->
87
+ <!-- scope: microscope -->
88
+ The dataset was intended to serve as a large-scale, high-quality benchmark dataset for cross-lingual summarization.
89
+ #### Primary Task
90
+ <!-- info: What primary task does the dataset support? -->
91
+ <!-- scope: telescope -->
92
+ Summarization
93
+ #### Communicative Goal
94
+ <!-- quick -->
95
+ <!-- info: Provide a short description of the communicative goal of a model trained for this task on this dataset. -->
96
+ <!-- scope: periscope -->
97
+ Produce a high quality summary for the given input article.
98
+ ### Credit
99
+ #### Curation Organization Type(s)
100
+ <!-- info: In what kind of organization did the dataset curation happen? -->
101
+ <!-- scope: telescope -->
102
+ `academic`
103
+ #### Curation Organization(s)
104
+ <!-- info: Name the organization(s). -->
105
+ <!-- scope: periscope -->
106
+ Columbia University
107
+ #### Dataset Creators
108
+ <!-- info: Who created the original dataset? List the people involved in collecting the dataset and their affiliation(s). -->
109
+ <!-- scope: microscope -->
110
+ Faisal Ladhak (Columbia University), Esin Durmus (Stanford University), Claire Cardie (Cornell University), Kathleen McKeown (Columbia University)
111
+ #### Who added the Dataset to GEM?
112
+ <!-- info: Who contributed to the data card and adding the dataset to GEM? List the people+affiliations involved in creating this data card and who helped integrate this dataset into GEM. -->
113
+ <!-- scope: microscope -->
114
+ Jenny Chim (Queen Mary University of London), Faisal Ladhak (Columbia University)
115
+ ### Dataset Structure
116
+ #### Data Fields
117
+ <!-- info: List and describe the fields present in the dataset. -->
118
+ <!-- scope: telescope -->
119
+ gem_id -- The id for the data instance.
120
+ source_language -- The language of the source article.
121
+ target_language -- The language of the target summary.
122
+ source -- The source document.
123
+
124
+
125
+ #### Example Instance
126
+
127
+ <!-- info: Provide a JSON formatted example of a typical instance in the dataset. -->
128
+ <!-- scope: periscope -->
129
+ {
130
+ "gem_id": "wikilingua_crosslingual-train-12345",
131
+ "gem_parent_id": "wikilingua_crosslingual-train-12345",
132
+ "source_language": "fr",
133
+ "target_language": "de",
134
+ "source": "Document in fr",
135
+ "target": "Summary in de",
136
+ }
137
+ #### Data Splits
138
+
139
+ <!-- info: Describe and name the splits in the dataset if there are more than one. -->
140
+ <!-- scope: periscope -->
141
+ The data is split into train/dev/test. In addition to the full test set, there's also a sampled version of the test set.
142
+
143
+ #### Splitting Criteria
144
+
145
+ <!-- info: Describe any criteria for splitting the data, if used. If there are differences between the splits (e.g., if the training annotations are machine-generated and the dev and test ones are created by humans, or if different numbers of annotators contributed to each example), describe them here. -->
146
+ <!-- scope: microscope -->
147
+ The data was split to ensure the same document would appear in the same split across languages so as to ensure there's no leakage into the test set.
148
+
149
+
150
+
151
+ ## Dataset in GEM
152
+
153
+ ### Rationale for Inclusion in GEM
154
+
155
+ #### Why is the Dataset in GEM?
156
+
157
+ <!-- info: What does this dataset contribute toward better generation evaluation and why is it part of GEM? -->
158
+ <!-- scope: microscope -->
159
+ This dataset provides a large-scale, high-quality resource for cross-lingual summarization in 18 languages, increasing the coverage of languages for the GEM summarization task.
160
+
161
+ #### Similar Datasets
162
+
163
+ <!-- info: Do other datasets for the high level task exist? -->
164
+ <!-- scope: telescope -->
165
+ yes
166
+
167
+ #### Unique Language Coverage
168
+
169
+ <!-- info: Does this dataset cover other languages than other datasets for the same task? -->
170
+ <!-- scope: periscope -->
171
+ yes
172
+
173
+ #### Difference from other GEM datasets
174
+
175
+ <!-- info: What else sets this dataset apart from other similar datasets in GEM? -->
176
+ <!-- scope: microscope -->
177
+ XSum covers English news articles, and MLSum covers news articles in German and Spanish.
178
+ In contrast, this dataset has how-to articles in 18 languages, substantially increasing the languages covered. Moreover, it also provides a a different domain than the other two datasets.
179
+
180
+ #### Ability that the Dataset measures
181
+
182
+ <!-- info: What aspect of model ability can be measured with this dataset? -->
183
+ <!-- scope: periscope -->
184
+ The ability to generate quality summaries across multiple languages.
185
+
186
+
187
+ ### GEM-Specific Curation
188
+
189
+ #### Modificatied for GEM?
190
+
191
+ <!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
192
+ <!-- scope: telescope -->
193
+ yes
194
+
195
+ #### GEM Modifications
196
+
197
+ <!-- info: What changes have been made to he original dataset? -->
198
+ <!-- scope: periscope -->
199
+ `other`
200
+
201
+ #### Modification Details
202
+
203
+ <!-- info: For each of these changes, described them in more details and provided the intended purpose of the modification -->
204
+ <!-- scope: microscope -->
205
+ Previous version had separate data loaders for each language. In this version, we've created a single monolingual data loader, which contains monolingual data in each of the 18 languages. In addition, we've also created a single cross-lingual data loader across all the language pairs in the dataset.
206
+
207
+ #### Additional Splits?
208
+
209
+ <!-- info: Does GEM provide additional splits to the dataset? -->
210
+ <!-- scope: telescope -->
211
+ no
212
+
213
+
214
+ ### Getting Started with the Task
215
+
216
+
217
+
218
+
219
+ ## Previous Results
220
+
221
+ ### Previous Results
222
+
223
+ #### Measured Model Abilities
224
+
225
+ <!-- info: What aspect of model ability can be measured with this dataset? -->
226
+ <!-- scope: telescope -->
227
+ Ability to summarize content across different languages.
228
+
229
+ #### Metrics
230
+
231
+ <!-- info: What metrics are typically used for this task? -->
232
+ <!-- scope: periscope -->
233
+ `ROUGE`
234
+
235
+ #### Proposed Evaluation
236
+
237
+ <!-- info: List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task. -->
238
+ <!-- scope: microscope -->
239
+ ROUGE is used to measure content selection by comparing word overlap with reference summaries. In addition, the authors of the dataset also used human evaluation to evaluate content selection and fluency of the systems.
240
+
241
+ #### Previous results available?
242
+
243
+ <!-- info: Are previous results available? -->
244
+ <!-- scope: telescope -->
245
+ no
246
+
247
+
248
+
249
+ ## Dataset Curation
250
+
251
+ ### Original Curation
252
+
253
+ #### Original Curation Rationale
254
+
255
+ <!-- info: Original curation rationale -->
256
+ <!-- scope: telescope -->
257
+ The dataset was created in order to enable new approaches for cross-lingual and multilingual summarization, which are currently understudied as well as open up inetersting new directions for research in summarization. E.g., exploration of multi-source cross-lingual architectures, i.e. models that can summarize from multiple source languages into a target language, building models that can summarize articles from any language to any other language for a given set of languages.
258
+
259
+ #### Communicative Goal
260
+
261
+ <!-- info: What was the communicative goal? -->
262
+ <!-- scope: periscope -->
263
+ Given an input article, produce a high quality summary of the article in the target language.
264
+
265
+ #### Sourced from Different Sources
266
+
267
+ <!-- info: Is the dataset aggregated from different data sources? -->
268
+ <!-- scope: telescope -->
269
+ no
270
+
271
+
272
+ ### Language Data
273
+
274
+ #### How was Language Data Obtained?
275
+
276
+ <!-- info: How was the language data obtained? -->
277
+ <!-- scope: telescope -->
278
+ `Found`
279
+
280
+ #### Where was it found?
281
+
282
+ <!-- info: If found, where from? -->
283
+ <!-- scope: telescope -->
284
+ `Single website`
285
+
286
+ #### Language Producers
287
+
288
+ <!-- info: What further information do we have on the language producers? -->
289
+ <!-- scope: microscope -->
290
+ WikiHow, which is an online resource of how-to guides (written and reviewed by human authors) is used as the data source.
291
+
292
+ #### Topics Covered
293
+
294
+ <!-- info: Does the language in the dataset focus on specific topics? How would you describe them? -->
295
+ <!-- scope: periscope -->
296
+ The articles cover 19 broad categories including health, arts and entertainment, personal care and style, travel, education and communications, etc. The categories cover a broad set of genres and topics.
297
+
298
+ #### Data Validation
299
+
300
+ <!-- info: Was the text validated by a different worker or a data curator? -->
301
+ <!-- scope: telescope -->
302
+ not validated
303
+
304
+ #### Was Data Filtered?
305
+
306
+ <!-- info: Were text instances selected or filtered? -->
307
+ <!-- scope: telescope -->
308
+ not filtered
309
+
310
+
311
+ ### Structured Annotations
312
+
313
+ #### Additional Annotations?
314
+
315
+ <!-- quick -->
316
+ <!-- info: Does the dataset have additional annotations for each instance? -->
317
+ <!-- scope: telescope -->
318
+ none
319
+
320
+ #### Annotation Service?
321
+
322
+ <!-- info: Was an annotation service used? -->
323
+ <!-- scope: telescope -->
324
+ no
325
+
326
+
327
+ ### Consent
328
+
329
+ #### Any Consent Policy?
330
+
331
+ <!-- info: Was there a consent policy involved when gathering the data? -->
332
+ <!-- scope: telescope -->
333
+ yes
334
+
335
+ #### Consent Policy Details
336
+
337
+ <!-- info: What was the consent policy? -->
338
+ <!-- scope: microscope -->
339
+ (1) Text Content. All text posted by Users to the Service is sub-licensed by wikiHow to other Users under a Creative Commons license as provided herein. The Creative Commons license allows such text content be used freely for non-commercial purposes, so long as it is used and attributed to the original author as specified under the terms of the license. Allowing free republication of our articles helps wikiHow achieve its mission by providing instruction on solving the problems of everyday life to more people for free. In order to support this goal, wikiHow hereby grants each User of the Service a license to all text content that Users contribute to the Service under the terms and conditions of a Creative Commons CC BY-NC-SA 3.0 License. Please be sure to read the terms of the license carefully. You continue to own all right, title, and interest in and to your User Content, and you are free to distribute it as you wish, whether for commercial or non-commercial purposes.
340
+
341
+ #### Other Consented Downstream Use
342
+
343
+ <!-- info: What other downstream uses of the data did the original data creators and the data curators consent to? -->
344
+ <!-- scope: microscope -->
345
+ The data is made freely available under the Creative Commons license, therefore there are no restrictions about downstream uses as long is it's for non-commercial purposes.
346
+
347
+
348
+ ### Private Identifying Information (PII)
349
+
350
+ #### Contains PII?
351
+
352
+ <!-- quick -->
353
+ <!-- info: Does the source language data likely contain Personal Identifying Information about the data creators or subjects? -->
354
+ <!-- scope: telescope -->
355
+ no PII
356
+
357
+ #### Justification for no PII
358
+
359
+ <!-- info: Provide a justification for selecting `no PII` above. -->
360
+ <!-- scope: periscope -->
361
+ Only the article text and summaries were collected. No user information was retained in the dataset.
362
+
363
+
364
+ ### Maintenance
365
+
366
+ #### Any Maintenance Plan?
367
+
368
+ <!-- info: Does the original dataset have a maintenance plan? -->
369
+ <!-- scope: telescope -->
370
+ no
371
+
372
+
373
+
374
+ ## Broader Social Context
375
+
376
+ ### Previous Work on the Social Impact of the Dataset
377
+
378
+ #### Usage of Models based on the Data
379
+
380
+ <!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
381
+ <!-- scope: telescope -->
382
+ yes - other datasets featuring the same task
383
+
384
+
385
+ ### Impact on Under-Served Communities
386
+
387
+ #### Addresses needs of underserved Communities?
388
+
389
+ <!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
390
+ <!-- scope: telescope -->
391
+ no
392
+
393
+
394
+ ### Discussion of Biases
395
+
396
+ #### Any Documented Social Biases?
397
+
398
+ <!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
399
+ <!-- scope: telescope -->
400
+ yes
401
+
402
+
403
+
404
+ ## Considerations for Using the Data
405
+
406
+ ### PII Risks and Liability
407
+
408
+
409
+
410
+ ### Licenses
411
+
412
+ #### Copyright Restrictions on the Dataset
413
+
414
+ <!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
415
+ <!-- scope: periscope -->
416
+ `non-commercial use only`
417
+
418
+ #### Copyright Restrictions on the Language Data
419
+
420
+ <!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
421
+ <!-- scope: periscope -->
422
+ `non-commercial use only`
423
+
424
+
425
+ ### Known Technical Limitations
426
+
427
+
428
+
429
+