Datasets:

ArXiv:
diffusers-benchmarking-bot commited on
Commit
0a4f2d4
·
verified ·
1 Parent(s): 6bfe866

Upload folder using huggingface_hub

Browse files
main/README.md CHANGED
@@ -87,6 +87,7 @@ PIXART-α Controlnet pipeline | Implementation of the controlnet model for pixar
87
  | CogVideoX DDIM Inversion Pipeline | Implementation of DDIM inversion and guided attention-based editing denoising process on CogVideoX. | [CogVideoX DDIM Inversion Pipeline](#cogvideox-ddim-inversion-pipeline) | - | [LittleNyima](https://github.com/LittleNyima) |
88
  | FaithDiff Stable Diffusion XL Pipeline | Implementation of [(CVPR 2025) FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolutionUnleashing Diffusion Priors for Faithful Image Super-resolution](https://huggingface.co/papers/2411.18824) - FaithDiff is a faithful image super-resolution method that leverages latent diffusion models by actively adapting the diffusion prior and jointly fine-tuning its components (encoder and diffusion model) with an alignment module to ensure high fidelity and structural consistency. | [FaithDiff Stable Diffusion XL Pipeline](#faithdiff-stable-diffusion-xl-pipeline) | [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/jychen9811/FaithDiff) | [Junyang Chen, Jinshan Pan, Jiangxin Dong, IMAG Lab, (Adapted by Eliseu Silva)](https://github.com/JyChen9811/FaithDiff) |
89
  | Stable Diffusion 3 InstructPix2Pix Pipeline | Implementation of Stable Diffusion 3 InstructPix2Pix Pipeline | [Stable Diffusion 3 InstructPix2Pix Pipeline](#stable-diffusion-3-instructpix2pix-pipeline) | [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/BleachNick/SD3_UltraEdit_freeform) [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/CaptainZZZ/sd3-instructpix2pix) | [Jiayu Zhang](https://github.com/xduzhangjiayu) and [Haozhe Zhao](https://github.com/HaozheZhao)|
 
90
  To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
91
 
92
  ```py
@@ -5479,4 +5480,48 @@ edited_image.save("edited_image.png")
5479
  ### Note
5480
  This model is trained on 512x512, so input size is better on 512x512.
5481
  For better editing performance, please refer to this powerful model https://huggingface.co/BleachNick/SD3_UltraEdit_freeform and Paper "UltraEdit: Instruction-based Fine-Grained Image
5482
- Editing at Scale", many thanks to their contribution!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  | CogVideoX DDIM Inversion Pipeline | Implementation of DDIM inversion and guided attention-based editing denoising process on CogVideoX. | [CogVideoX DDIM Inversion Pipeline](#cogvideox-ddim-inversion-pipeline) | - | [LittleNyima](https://github.com/LittleNyima) |
88
  | FaithDiff Stable Diffusion XL Pipeline | Implementation of [(CVPR 2025) FaithDiff: Unleashing Diffusion Priors for Faithful Image Super-resolutionUnleashing Diffusion Priors for Faithful Image Super-resolution](https://huggingface.co/papers/2411.18824) - FaithDiff is a faithful image super-resolution method that leverages latent diffusion models by actively adapting the diffusion prior and jointly fine-tuning its components (encoder and diffusion model) with an alignment module to ensure high fidelity and structural consistency. | [FaithDiff Stable Diffusion XL Pipeline](#faithdiff-stable-diffusion-xl-pipeline) | [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/jychen9811/FaithDiff) | [Junyang Chen, Jinshan Pan, Jiangxin Dong, IMAG Lab, (Adapted by Eliseu Silva)](https://github.com/JyChen9811/FaithDiff) |
89
  | Stable Diffusion 3 InstructPix2Pix Pipeline | Implementation of Stable Diffusion 3 InstructPix2Pix Pipeline | [Stable Diffusion 3 InstructPix2Pix Pipeline](#stable-diffusion-3-instructpix2pix-pipeline) | [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/BleachNick/SD3_UltraEdit_freeform) [![Hugging Face Models](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Models-blue)](https://huggingface.co/CaptainZZZ/sd3-instructpix2pix) | [Jiayu Zhang](https://github.com/xduzhangjiayu) and [Haozhe Zhao](https://github.com/HaozheZhao)|
90
+ | Flux Kontext multiple images | A modified version of the `FluxKontextPipeline` that supports calling Flux Kontext with multiple reference images.| [Flux Kontext multiple input Pipeline](#flux-kontext-multiple-images) | - | [Net-Mist](https://github.com/Net-Mist) |
91
  To load a custom pipeline you just need to pass the `custom_pipeline` argument to `DiffusionPipeline`, as one of the files in `diffusers/examples/community`. Feel free to send a PR with your own pipelines, we will merge them quickly.
92
 
93
  ```py
 
5480
  ### Note
5481
  This model is trained on 512x512, so input size is better on 512x512.
5482
  For better editing performance, please refer to this powerful model https://huggingface.co/BleachNick/SD3_UltraEdit_freeform and Paper "UltraEdit: Instruction-based Fine-Grained Image
5483
+ Editing at Scale", many thanks to their contribution!
5484
+
5485
+ # Flux Kontext multiple images
5486
+
5487
+ This implementation of Flux Kontext allows users to pass multiple reference images. Each image is encoded separately, and the resulting latent vectors are concatenated.
5488
+
5489
+ As explained in Section 3 of [the paper](https://arxiv.org/pdf/2506.15742), the model's sequence concatenation mechanism can extend its capabilities to handle multiple reference images. However, note that the current version of Flux Kontext was not trained for this use case. In practice, stacking along the first axis does not yield correct results, while stacking along the other two axes appears to work.
5490
+
5491
+ ## Example Usage
5492
+
5493
+ This pipeline loads two reference images and generates a new image based on them.
5494
+
5495
+ ```python
5496
+ import torch
5497
+
5498
+ from diffusers import FluxKontextPipeline
5499
+ from diffusers.utils import load_image
5500
+
5501
+
5502
+ pipe = FluxKontextPipeline.from_pretrained(
5503
+ "black-forest-labs/FLUX.1-Kontext-dev",
5504
+ torch_dtype=torch.bfloat16,
5505
+ custom_pipeline="pipeline_flux_kontext_multiple_images",
5506
+ )
5507
+ pipe.to("cuda")
5508
+
5509
+ pikachu_image = load_image(
5510
+ "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/yarn-art-pikachu.png"
5511
+ ).convert("RGB")
5512
+ cat_image = load_image(
5513
+ "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
5514
+ ).convert("RGB")
5515
+
5516
+
5517
+ prompts = [
5518
+ "Pikachu and the cat are sitting together at a pizzeria table, enjoying a delicious pizza.",
5519
+ ]
5520
+ images = pipe(
5521
+ multiple_images=[(pikachu_image, cat_image)],
5522
+ prompt=prompts,
5523
+ guidance_scale=2.5,
5524
+ generator=torch.Generator().manual_seed(42),
5525
+ ).images
5526
+ images[0].save("pizzeria.png")
5527
+ ```
main/pipeline_flux_kontext_multiple_images.py ADDED
@@ -0,0 +1,1211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2025 Black Forest Labs and The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+
15
+ import inspect
16
+ from typing import Any, Callable, Dict, List, Optional, Tuple, Union
17
+
18
+ import numpy as np
19
+ import PIL.Image
20
+ import torch
21
+ from transformers import (
22
+ CLIPImageProcessor,
23
+ CLIPTextModel,
24
+ CLIPTokenizer,
25
+ CLIPVisionModelWithProjection,
26
+ T5EncoderModel,
27
+ T5TokenizerFast,
28
+ )
29
+
30
+ from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
31
+ from diffusers.loaders import FluxIPAdapterMixin, FluxLoraLoaderMixin, FromSingleFileMixin, TextualInversionLoaderMixin
32
+ from diffusers.models import AutoencoderKL, FluxTransformer2DModel
33
+ from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput
34
+ from diffusers.pipelines.pipeline_utils import DiffusionPipeline
35
+ from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
36
+ from diffusers.utils import (
37
+ USE_PEFT_BACKEND,
38
+ is_torch_xla_available,
39
+ logging,
40
+ replace_example_docstring,
41
+ scale_lora_layers,
42
+ unscale_lora_layers,
43
+ )
44
+ from diffusers.utils.torch_utils import randn_tensor
45
+
46
+
47
+ if is_torch_xla_available():
48
+ import torch_xla.core.xla_model as xm
49
+
50
+ XLA_AVAILABLE = True
51
+ else:
52
+ XLA_AVAILABLE = False
53
+
54
+
55
+ logger = logging.get_logger(__name__) # pylint: disable=invalid-name
56
+
57
+
58
+ PipelineSeveralImagesInput = Union[
59
+ Tuple[PIL.Image.Image, ...],
60
+ Tuple[np.ndarray, ...],
61
+ Tuple[torch.Tensor, ...],
62
+ List[Tuple[PIL.Image.Image, ...]],
63
+ List[Tuple[np.ndarray, ...]],
64
+ List[Tuple[torch.Tensor, ...]],
65
+ ]
66
+
67
+
68
+ EXAMPLE_DOC_STRING = """
69
+ Examples:
70
+ ```py
71
+ >>> import torch
72
+ >>> from diffusers import FluxKontextPipeline
73
+ >>> from diffusers.utils import load_image
74
+
75
+ >>> pipe = FluxKontextPipeline.from_pretrained(
76
+ ... "black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16
77
+ ... )
78
+ >>> pipe.to("cuda")
79
+
80
+ >>> image = load_image(
81
+ ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/yarn-art-pikachu.png"
82
+ ... ).convert("RGB")
83
+ >>> prompt = "Make Pikachu hold a sign that says 'Black Forest Labs is awesome', yarn art style, detailed, vibrant colors"
84
+ >>> image = pipe(
85
+ ... image=image,
86
+ ... prompt=prompt,
87
+ ... guidance_scale=2.5,
88
+ ... generator=torch.Generator().manual_seed(42),
89
+ ... ).images[0]
90
+ >>> image.save("output.png")
91
+ ```
92
+ """
93
+
94
+ PREFERRED_KONTEXT_RESOLUTIONS = [
95
+ (672, 1568),
96
+ (688, 1504),
97
+ (720, 1456),
98
+ (752, 1392),
99
+ (800, 1328),
100
+ (832, 1248),
101
+ (880, 1184),
102
+ (944, 1104),
103
+ (1024, 1024),
104
+ (1104, 944),
105
+ (1184, 880),
106
+ (1248, 832),
107
+ (1328, 800),
108
+ (1392, 752),
109
+ (1456, 720),
110
+ (1504, 688),
111
+ (1568, 672),
112
+ ]
113
+
114
+
115
+ def calculate_shift(
116
+ image_seq_len,
117
+ base_seq_len: int = 256,
118
+ max_seq_len: int = 4096,
119
+ base_shift: float = 0.5,
120
+ max_shift: float = 1.15,
121
+ ):
122
+ m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
123
+ b = base_shift - m * base_seq_len
124
+ mu = image_seq_len * m + b
125
+ return mu
126
+
127
+
128
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
129
+ def retrieve_timesteps(
130
+ scheduler,
131
+ num_inference_steps: Optional[int] = None,
132
+ device: Optional[Union[str, torch.device]] = None,
133
+ timesteps: Optional[List[int]] = None,
134
+ sigmas: Optional[List[float]] = None,
135
+ **kwargs,
136
+ ):
137
+ r"""
138
+ Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
139
+ custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
140
+
141
+ Args:
142
+ scheduler (`SchedulerMixin`):
143
+ The scheduler to get timesteps from.
144
+ num_inference_steps (`int`):
145
+ The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
146
+ must be `None`.
147
+ device (`str` or `torch.device`, *optional*):
148
+ The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
149
+ timesteps (`List[int]`, *optional*):
150
+ Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
151
+ `num_inference_steps` and `sigmas` must be `None`.
152
+ sigmas (`List[float]`, *optional*):
153
+ Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
154
+ `num_inference_steps` and `timesteps` must be `None`.
155
+
156
+ Returns:
157
+ `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
158
+ second element is the number of inference steps.
159
+ """
160
+ if timesteps is not None and sigmas is not None:
161
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
162
+ if timesteps is not None:
163
+ accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
164
+ if not accepts_timesteps:
165
+ raise ValueError(
166
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
167
+ f" timestep schedules. Please check whether you are using the correct scheduler."
168
+ )
169
+ scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
170
+ timesteps = scheduler.timesteps
171
+ num_inference_steps = len(timesteps)
172
+ elif sigmas is not None:
173
+ accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
174
+ if not accept_sigmas:
175
+ raise ValueError(
176
+ f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
177
+ f" sigmas schedules. Please check whether you are using the correct scheduler."
178
+ )
179
+ scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
180
+ timesteps = scheduler.timesteps
181
+ num_inference_steps = len(timesteps)
182
+ else:
183
+ scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
184
+ timesteps = scheduler.timesteps
185
+ return timesteps, num_inference_steps
186
+
187
+
188
+ # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
189
+ def retrieve_latents(
190
+ encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
191
+ ):
192
+ if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
193
+ return encoder_output.latent_dist.sample(generator)
194
+ elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
195
+ return encoder_output.latent_dist.mode()
196
+ elif hasattr(encoder_output, "latents"):
197
+ return encoder_output.latents
198
+ else:
199
+ raise AttributeError("Could not access latents of provided encoder_output")
200
+
201
+
202
+ class FluxKontextPipeline(
203
+ DiffusionPipeline,
204
+ FluxLoraLoaderMixin,
205
+ FromSingleFileMixin,
206
+ TextualInversionLoaderMixin,
207
+ FluxIPAdapterMixin,
208
+ ):
209
+ r"""
210
+ The Flux Kontext pipeline for text-to-image generation.
211
+
212
+ Reference: https://blackforestlabs.ai/announcing-black-forest-labs/
213
+
214
+ Args:
215
+ transformer ([`FluxTransformer2DModel`]):
216
+ Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
217
+ scheduler ([`FlowMatchEulerDiscreteScheduler`]):
218
+ A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
219
+ vae ([`AutoencoderKL`]):
220
+ Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
221
+ text_encoder ([`CLIPTextModel`]):
222
+ [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
223
+ the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
224
+ text_encoder_2 ([`T5EncoderModel`]):
225
+ [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
226
+ the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
227
+ tokenizer (`CLIPTokenizer`):
228
+ Tokenizer of class
229
+ [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
230
+ tokenizer_2 (`T5TokenizerFast`):
231
+ Second Tokenizer of class
232
+ [T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
233
+ """
234
+
235
+ model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->transformer->vae"
236
+ _optional_components = ["image_encoder", "feature_extractor"]
237
+ _callback_tensor_inputs = ["latents", "prompt_embeds"]
238
+
239
+ def __init__(
240
+ self,
241
+ scheduler: FlowMatchEulerDiscreteScheduler,
242
+ vae: AutoencoderKL,
243
+ text_encoder: CLIPTextModel,
244
+ tokenizer: CLIPTokenizer,
245
+ text_encoder_2: T5EncoderModel,
246
+ tokenizer_2: T5TokenizerFast,
247
+ transformer: FluxTransformer2DModel,
248
+ image_encoder: CLIPVisionModelWithProjection = None,
249
+ feature_extractor: CLIPImageProcessor = None,
250
+ ):
251
+ super().__init__()
252
+
253
+ self.register_modules(
254
+ vae=vae,
255
+ text_encoder=text_encoder,
256
+ text_encoder_2=text_encoder_2,
257
+ tokenizer=tokenizer,
258
+ tokenizer_2=tokenizer_2,
259
+ transformer=transformer,
260
+ scheduler=scheduler,
261
+ image_encoder=image_encoder,
262
+ feature_extractor=feature_extractor,
263
+ )
264
+ self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
265
+ # Flux latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
266
+ # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
267
+ self.latent_channels = self.vae.config.latent_channels if getattr(self, "vae", None) else 16
268
+ self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
269
+ self.tokenizer_max_length = (
270
+ self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
271
+ )
272
+ self.default_sample_size = 128
273
+
274
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_t5_prompt_embeds
275
+ def _get_t5_prompt_embeds(
276
+ self,
277
+ prompt: Union[str, List[str]] = None,
278
+ num_images_per_prompt: int = 1,
279
+ max_sequence_length: int = 512,
280
+ device: Optional[torch.device] = None,
281
+ dtype: Optional[torch.dtype] = None,
282
+ ):
283
+ device = device or self._execution_device
284
+ dtype = dtype or self.text_encoder.dtype
285
+
286
+ prompt = [prompt] if isinstance(prompt, str) else prompt
287
+ batch_size = len(prompt)
288
+
289
+ if isinstance(self, TextualInversionLoaderMixin):
290
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer_2)
291
+
292
+ text_inputs = self.tokenizer_2(
293
+ prompt,
294
+ padding="max_length",
295
+ max_length=max_sequence_length,
296
+ truncation=True,
297
+ return_length=False,
298
+ return_overflowing_tokens=False,
299
+ return_tensors="pt",
300
+ )
301
+ text_input_ids = text_inputs.input_ids
302
+ untruncated_ids = self.tokenizer_2(prompt, padding="longest", return_tensors="pt").input_ids
303
+
304
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
305
+ removed_text = self.tokenizer_2.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
306
+ logger.warning(
307
+ "The following part of your input was truncated because `max_sequence_length` is set to "
308
+ f" {max_sequence_length} tokens: {removed_text}"
309
+ )
310
+
311
+ prompt_embeds = self.text_encoder_2(text_input_ids.to(device), output_hidden_states=False)[0]
312
+
313
+ dtype = self.text_encoder_2.dtype
314
+ prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
315
+
316
+ _, seq_len, _ = prompt_embeds.shape
317
+
318
+ # duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
319
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
320
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
321
+
322
+ return prompt_embeds
323
+
324
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._get_clip_prompt_embeds
325
+ def _get_clip_prompt_embeds(
326
+ self,
327
+ prompt: Union[str, List[str]],
328
+ num_images_per_prompt: int = 1,
329
+ device: Optional[torch.device] = None,
330
+ ):
331
+ device = device or self._execution_device
332
+
333
+ prompt = [prompt] if isinstance(prompt, str) else prompt
334
+ batch_size = len(prompt)
335
+
336
+ if isinstance(self, TextualInversionLoaderMixin):
337
+ prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
338
+
339
+ text_inputs = self.tokenizer(
340
+ prompt,
341
+ padding="max_length",
342
+ max_length=self.tokenizer_max_length,
343
+ truncation=True,
344
+ return_overflowing_tokens=False,
345
+ return_length=False,
346
+ return_tensors="pt",
347
+ )
348
+
349
+ text_input_ids = text_inputs.input_ids
350
+ untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
351
+ if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
352
+ removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer_max_length - 1 : -1])
353
+ logger.warning(
354
+ "The following part of your input was truncated because CLIP can only handle sequences up to"
355
+ f" {self.tokenizer_max_length} tokens: {removed_text}"
356
+ )
357
+ prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
358
+
359
+ # Use pooled output of CLIPTextModel
360
+ prompt_embeds = prompt_embeds.pooler_output
361
+ prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
362
+
363
+ # duplicate text embeddings for each generation per prompt, using mps friendly method
364
+ prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
365
+ prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
366
+
367
+ return prompt_embeds
368
+
369
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_prompt
370
+ def encode_prompt(
371
+ self,
372
+ prompt: Union[str, List[str]],
373
+ prompt_2: Union[str, List[str]],
374
+ device: Optional[torch.device] = None,
375
+ num_images_per_prompt: int = 1,
376
+ prompt_embeds: Optional[torch.FloatTensor] = None,
377
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
378
+ max_sequence_length: int = 512,
379
+ lora_scale: Optional[float] = None,
380
+ ):
381
+ r"""
382
+
383
+ Args:
384
+ prompt (`str` or `List[str]`, *optional*):
385
+ prompt to be encoded
386
+ prompt_2 (`str` or `List[str]`, *optional*):
387
+ The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
388
+ used in all text-encoders
389
+ device: (`torch.device`):
390
+ torch device
391
+ num_images_per_prompt (`int`):
392
+ number of images that should be generated per prompt
393
+ prompt_embeds (`torch.FloatTensor`, *optional*):
394
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
395
+ provided, text embeddings will be generated from `prompt` input argument.
396
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
397
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
398
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
399
+ lora_scale (`float`, *optional*):
400
+ A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
401
+ """
402
+ device = device or self._execution_device
403
+
404
+ # set lora scale so that monkey patched LoRA
405
+ # function of text encoder can correctly access it
406
+ if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
407
+ self._lora_scale = lora_scale
408
+
409
+ # dynamically adjust the LoRA scale
410
+ if self.text_encoder is not None and USE_PEFT_BACKEND:
411
+ scale_lora_layers(self.text_encoder, lora_scale)
412
+ if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
413
+ scale_lora_layers(self.text_encoder_2, lora_scale)
414
+
415
+ prompt = [prompt] if isinstance(prompt, str) else prompt
416
+
417
+ if prompt_embeds is None:
418
+ prompt_2 = prompt_2 or prompt
419
+ prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
420
+
421
+ # We only use the pooled prompt output from the CLIPTextModel
422
+ pooled_prompt_embeds = self._get_clip_prompt_embeds(
423
+ prompt=prompt,
424
+ device=device,
425
+ num_images_per_prompt=num_images_per_prompt,
426
+ )
427
+ prompt_embeds = self._get_t5_prompt_embeds(
428
+ prompt=prompt_2,
429
+ num_images_per_prompt=num_images_per_prompt,
430
+ max_sequence_length=max_sequence_length,
431
+ device=device,
432
+ )
433
+
434
+ if self.text_encoder is not None:
435
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
436
+ # Retrieve the original scale by scaling back the LoRA layers
437
+ unscale_lora_layers(self.text_encoder, lora_scale)
438
+
439
+ if self.text_encoder_2 is not None:
440
+ if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
441
+ # Retrieve the original scale by scaling back the LoRA layers
442
+ unscale_lora_layers(self.text_encoder_2, lora_scale)
443
+
444
+ dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
445
+ text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
446
+
447
+ return prompt_embeds, pooled_prompt_embeds, text_ids
448
+
449
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.encode_image
450
+ def encode_image(self, image, device, num_images_per_prompt):
451
+ dtype = next(self.image_encoder.parameters()).dtype
452
+
453
+ if not isinstance(image, torch.Tensor):
454
+ image = self.feature_extractor(image, return_tensors="pt").pixel_values
455
+
456
+ image = image.to(device=device, dtype=dtype)
457
+ image_embeds = self.image_encoder(image).image_embeds
458
+ image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
459
+ return image_embeds
460
+
461
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.prepare_ip_adapter_image_embeds
462
+ def prepare_ip_adapter_image_embeds(
463
+ self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt
464
+ ):
465
+ image_embeds = []
466
+ if ip_adapter_image_embeds is None:
467
+ if not isinstance(ip_adapter_image, list):
468
+ ip_adapter_image = [ip_adapter_image]
469
+
470
+ if len(ip_adapter_image) != self.transformer.encoder_hid_proj.num_ip_adapters:
471
+ raise ValueError(
472
+ f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
473
+ )
474
+
475
+ for single_ip_adapter_image in ip_adapter_image:
476
+ single_image_embeds = self.encode_image(single_ip_adapter_image, device, 1)
477
+ image_embeds.append(single_image_embeds[None, :])
478
+ else:
479
+ if not isinstance(ip_adapter_image_embeds, list):
480
+ ip_adapter_image_embeds = [ip_adapter_image_embeds]
481
+
482
+ if len(ip_adapter_image_embeds) != self.transformer.encoder_hid_proj.num_ip_adapters:
483
+ raise ValueError(
484
+ f"`ip_adapter_image_embeds` must have same length as the number of IP Adapters. Got {len(ip_adapter_image_embeds)} image embeds and {self.transformer.encoder_hid_proj.num_ip_adapters} IP Adapters."
485
+ )
486
+
487
+ for single_image_embeds in ip_adapter_image_embeds:
488
+ image_embeds.append(single_image_embeds)
489
+
490
+ ip_adapter_image_embeds = []
491
+ for single_image_embeds in image_embeds:
492
+ single_image_embeds = torch.cat([single_image_embeds] * num_images_per_prompt, dim=0)
493
+ single_image_embeds = single_image_embeds.to(device=device)
494
+ ip_adapter_image_embeds.append(single_image_embeds)
495
+
496
+ return ip_adapter_image_embeds
497
+
498
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.check_inputs
499
+ def check_inputs(
500
+ self,
501
+ prompt,
502
+ prompt_2,
503
+ height,
504
+ width,
505
+ negative_prompt=None,
506
+ negative_prompt_2=None,
507
+ prompt_embeds=None,
508
+ negative_prompt_embeds=None,
509
+ pooled_prompt_embeds=None,
510
+ negative_pooled_prompt_embeds=None,
511
+ callback_on_step_end_tensor_inputs=None,
512
+ max_sequence_length=None,
513
+ ):
514
+ if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
515
+ logger.warning(
516
+ f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
517
+ )
518
+
519
+ if callback_on_step_end_tensor_inputs is not None and not all(
520
+ k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
521
+ ):
522
+ raise ValueError(
523
+ f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
524
+ )
525
+
526
+ if prompt is not None and prompt_embeds is not None:
527
+ raise ValueError(
528
+ f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
529
+ " only forward one of the two."
530
+ )
531
+ elif prompt_2 is not None and prompt_embeds is not None:
532
+ raise ValueError(
533
+ f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
534
+ " only forward one of the two."
535
+ )
536
+ elif prompt is None and prompt_embeds is None:
537
+ raise ValueError(
538
+ "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
539
+ )
540
+ elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
541
+ raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
542
+ elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
543
+ raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
544
+
545
+ if negative_prompt is not None and negative_prompt_embeds is not None:
546
+ raise ValueError(
547
+ f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
548
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
549
+ )
550
+ elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
551
+ raise ValueError(
552
+ f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
553
+ f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
554
+ )
555
+
556
+ if prompt_embeds is not None and pooled_prompt_embeds is None:
557
+ raise ValueError(
558
+ "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
559
+ )
560
+ if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
561
+ raise ValueError(
562
+ "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
563
+ )
564
+
565
+ if max_sequence_length is not None and max_sequence_length > 512:
566
+ raise ValueError(f"`max_sequence_length` cannot be greater than 512 but is {max_sequence_length}")
567
+
568
+ @staticmethod
569
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._prepare_latent_image_ids
570
+ def _prepare_latent_image_ids(batch_size, height, width, device, dtype):
571
+ latent_image_ids = torch.zeros(height, width, 3)
572
+ latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height)[:, None]
573
+ latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width)[None, :]
574
+
575
+ latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape
576
+
577
+ latent_image_ids = latent_image_ids.reshape(
578
+ latent_image_id_height * latent_image_id_width, latent_image_id_channels
579
+ )
580
+
581
+ return latent_image_ids.to(device=device, dtype=dtype)
582
+
583
+ @staticmethod
584
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._pack_latents
585
+ def _pack_latents(latents, batch_size, num_channels_latents, height, width):
586
+ latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
587
+ latents = latents.permute(0, 2, 4, 1, 3, 5)
588
+ latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
589
+
590
+ return latents
591
+
592
+ @staticmethod
593
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline._unpack_latents
594
+ def _unpack_latents(latents, height, width, vae_scale_factor):
595
+ batch_size, num_patches, channels = latents.shape
596
+
597
+ # VAE applies 8x compression on images but we must also account for packing which requires
598
+ # latent height and width to be divisible by 2.
599
+ height = 2 * (int(height) // (vae_scale_factor * 2))
600
+ width = 2 * (int(width) // (vae_scale_factor * 2))
601
+
602
+ latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
603
+ latents = latents.permute(0, 3, 1, 4, 2, 5)
604
+
605
+ latents = latents.reshape(batch_size, channels // (2 * 2), height, width)
606
+
607
+ return latents
608
+
609
+ def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
610
+ if isinstance(generator, list):
611
+ image_latents = [
612
+ retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode="argmax")
613
+ for i in range(image.shape[0])
614
+ ]
615
+ image_latents = torch.cat(image_latents, dim=0)
616
+ else:
617
+ image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax")
618
+
619
+ image_latents = (image_latents - self.vae.config.shift_factor) * self.vae.config.scaling_factor
620
+
621
+ return image_latents
622
+
623
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.enable_vae_slicing
624
+ def enable_vae_slicing(self):
625
+ r"""
626
+ Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
627
+ compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
628
+ """
629
+ self.vae.enable_slicing()
630
+
631
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.disable_vae_slicing
632
+ def disable_vae_slicing(self):
633
+ r"""
634
+ Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
635
+ computing decoding in one step.
636
+ """
637
+ self.vae.disable_slicing()
638
+
639
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.enable_vae_tiling
640
+ def enable_vae_tiling(self):
641
+ r"""
642
+ Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
643
+ compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
644
+ processing larger images.
645
+ """
646
+ self.vae.enable_tiling()
647
+
648
+ # Copied from diffusers.pipelines.flux.pipeline_flux.FluxPipeline.disable_vae_tiling
649
+ def disable_vae_tiling(self):
650
+ r"""
651
+ Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
652
+ computing decoding in one step.
653
+ """
654
+ self.vae.disable_tiling()
655
+
656
+ def preprocess_image(self, image: PipelineImageInput, _auto_resize: bool, multiple_of: int) -> torch.Tensor:
657
+ img = image[0] if isinstance(image, list) else image
658
+ image_height, image_width = self.image_processor.get_default_height_width(img)
659
+ aspect_ratio = image_width / image_height
660
+ if _auto_resize:
661
+ # Kontext is trained on specific resolutions, using one of them is recommended
662
+ _, image_width, image_height = min(
663
+ (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
664
+ )
665
+ image_width = image_width // multiple_of * multiple_of
666
+ image_height = image_height // multiple_of * multiple_of
667
+ image = self.image_processor.resize(image, image_height, image_width)
668
+ image = self.image_processor.preprocess(image, image_height, image_width)
669
+ return image
670
+
671
+ def preprocess_images(
672
+ self,
673
+ images: PipelineSeveralImagesInput,
674
+ _auto_resize: bool,
675
+ multiple_of: int,
676
+ ) -> torch.Tensor:
677
+ # TODO for reviewer: I'm not sure what's the best way to implement this part given the philosophy of the repo.
678
+ # The solutions I thought about are:
679
+ # - Make the `resize` and `preprocess` methods of `VaeImageProcessor` more generic (using TypeVar for instance)
680
+ # - Start by converting the image to a List[Tuple[ {image_format} ]], to unify the processing logic
681
+ # - Or duplicate the code, as done here.
682
+ # What do you think ?
683
+
684
+ # convert multiple_images to a list of tuple, to simplify following logic
685
+ if not isinstance(images, list):
686
+ images = [images]
687
+ # now multiple_images is a list of tuples.
688
+
689
+ img = images[0][0]
690
+ image_height, image_width = self.image_processor.get_default_height_width(img)
691
+ aspect_ratio = image_width / image_height
692
+ if _auto_resize:
693
+ # Kontext is trained on specific resolutions, using one of them is recommended
694
+ _, image_width, image_height = min(
695
+ (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS
696
+ )
697
+ image_width = image_width // multiple_of * multiple_of
698
+ image_height = image_height // multiple_of * multiple_of
699
+ n_image_per_batch = len(images[0])
700
+ output_images = []
701
+ for i in range(n_image_per_batch):
702
+ image = [batch_images[i] for batch_images in images]
703
+ image = self.image_processor.resize(image, image_height, image_width)
704
+ image = self.image_processor.preprocess(image, image_height, image_width)
705
+ output_images.append(image)
706
+ return output_images
707
+
708
+ def prepare_latents(
709
+ self,
710
+ images: Optional[list[torch.Tensor]],
711
+ batch_size: int,
712
+ num_channels_latents: int,
713
+ height: int,
714
+ width: int,
715
+ dtype: torch.dtype,
716
+ device: torch.device,
717
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
718
+ latents: Optional[torch.Tensor] = None,
719
+ ):
720
+ if isinstance(generator, list) and len(generator) != batch_size:
721
+ raise ValueError(
722
+ f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
723
+ f" size of {batch_size}. Make sure the batch size matches the length of the generators."
724
+ )
725
+
726
+ # VAE applies 8x compression on images but we must also account for packing which requires
727
+ # latent height and width to be divisible by 2.
728
+ height = 2 * (int(height) // (self.vae_scale_factor * 2))
729
+ width = 2 * (int(width) // (self.vae_scale_factor * 2))
730
+ shape = (batch_size, num_channels_latents, height, width)
731
+
732
+ all_image_latents = []
733
+ all_image_ids = []
734
+ image_latents = images_ids = None
735
+ if images is not None:
736
+ for i, image in enumerate(images):
737
+ image = image.to(device=device, dtype=dtype)
738
+ if image.shape[1] != self.latent_channels:
739
+ image_latents = self._encode_vae_image(image=image, generator=generator)
740
+ else:
741
+ image_latents = image
742
+ if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
743
+ # expand init_latents for batch_size
744
+ additional_image_per_prompt = batch_size // image_latents.shape[0]
745
+ image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
746
+ elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
747
+ raise ValueError(
748
+ f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
749
+ )
750
+ else:
751
+ image_latents = torch.cat([image_latents], dim=0)
752
+
753
+ image_latent_height, image_latent_width = image_latents.shape[2:]
754
+ image_latents = self._pack_latents(
755
+ image_latents, batch_size, num_channels_latents, image_latent_height, image_latent_width
756
+ )
757
+ image_ids = self._prepare_latent_image_ids(
758
+ batch_size, image_latent_height // 2, image_latent_width // 2, device, dtype
759
+ )
760
+ # image ids are the same as latent ids with the first dimension set to 1 instead of 0
761
+ image_ids[..., 0] = 1
762
+
763
+ # set the image ids to the correct position in the latent grid
764
+ image_ids[..., 2] += i * (image_latent_height // 2)
765
+
766
+ all_image_ids.append(image_ids)
767
+ all_image_latents.append(image_latents)
768
+
769
+ image_latents = torch.cat(all_image_latents, dim=1)
770
+ images_ids = torch.cat(all_image_ids, dim=0)
771
+
772
+ latent_ids = self._prepare_latent_image_ids(batch_size, height // 2, width // 2, device, dtype)
773
+
774
+ if latents is None:
775
+ latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
776
+ latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
777
+ else:
778
+ latents = latents.to(device=device, dtype=dtype)
779
+
780
+ return latents, image_latents, latent_ids, images_ids
781
+
782
+ @property
783
+ def guidance_scale(self):
784
+ return self._guidance_scale
785
+
786
+ @property
787
+ def joint_attention_kwargs(self):
788
+ return self._joint_attention_kwargs
789
+
790
+ @property
791
+ def num_timesteps(self):
792
+ return self._num_timesteps
793
+
794
+ @property
795
+ def current_timestep(self):
796
+ return self._current_timestep
797
+
798
+ @property
799
+ def interrupt(self):
800
+ return self._interrupt
801
+
802
+ @torch.no_grad()
803
+ @replace_example_docstring(EXAMPLE_DOC_STRING)
804
+ def __call__(
805
+ self,
806
+ image: Optional[PipelineImageInput] = None,
807
+ prompt: Union[str, List[str]] = None,
808
+ prompt_2: Optional[Union[str, List[str]]] = None,
809
+ negative_prompt: Union[str, List[str]] = None,
810
+ negative_prompt_2: Optional[Union[str, List[str]]] = None,
811
+ true_cfg_scale: float = 1.0,
812
+ height: Optional[int] = None,
813
+ width: Optional[int] = None,
814
+ num_inference_steps: int = 28,
815
+ sigmas: Optional[List[float]] = None,
816
+ guidance_scale: float = 3.5,
817
+ num_images_per_prompt: Optional[int] = 1,
818
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
819
+ latents: Optional[torch.FloatTensor] = None,
820
+ prompt_embeds: Optional[torch.FloatTensor] = None,
821
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
822
+ ip_adapter_image: Optional[PipelineImageInput] = None,
823
+ ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
824
+ negative_ip_adapter_image: Optional[PipelineImageInput] = None,
825
+ negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
826
+ negative_prompt_embeds: Optional[torch.FloatTensor] = None,
827
+ negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
828
+ output_type: Optional[str] = "pil",
829
+ return_dict: bool = True,
830
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
831
+ callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
832
+ callback_on_step_end_tensor_inputs: List[str] = ["latents"],
833
+ max_sequence_length: int = 512,
834
+ max_area: int = 1024**2,
835
+ _auto_resize: bool = True,
836
+ multiple_images: Optional[PipelineSeveralImagesInput] = None,
837
+ ):
838
+ r"""
839
+ Function invoked when calling the pipeline for generation.
840
+
841
+ Args:
842
+ image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
843
+ `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both
844
+ numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list
845
+ or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a
846
+ list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image
847
+ latents as `image`, but if passing latents directly it is not encoded again.
848
+ prompt (`str` or `List[str]`, *optional*):
849
+ The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
850
+ instead.
851
+ prompt_2 (`str` or `List[str]`, *optional*):
852
+ The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
853
+ will be used instead.
854
+ negative_prompt (`str` or `List[str]`, *optional*):
855
+ The prompt or prompts not to guide the image generation. If not defined, one has to pass
856
+ `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
857
+ not greater than `1`).
858
+ negative_prompt_2 (`str` or `List[str]`, *optional*):
859
+ The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
860
+ `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders.
861
+ true_cfg_scale (`float`, *optional*, defaults to 1.0):
862
+ When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
863
+ height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
864
+ The height in pixels of the generated image. This is set to 1024 by default for the best results.
865
+ width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
866
+ The width in pixels of the generated image. This is set to 1024 by default for the best results.
867
+ num_inference_steps (`int`, *optional*, defaults to 50):
868
+ The number of denoising steps. More denoising steps usually lead to a higher quality image at the
869
+ expense of slower inference.
870
+ sigmas (`List[float]`, *optional*):
871
+ Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
872
+ their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
873
+ will be used.
874
+ guidance_scale (`float`, *optional*, defaults to 3.5):
875
+ Guidance scale as defined in [Classifier-Free Diffusion
876
+ Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
877
+ of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
878
+ `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
879
+ the text `prompt`, usually at the expense of lower image quality.
880
+ num_images_per_prompt (`int`, *optional*, defaults to 1):
881
+ The number of images to generate per prompt.
882
+ generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
883
+ One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
884
+ to make generation deterministic.
885
+ latents (`torch.FloatTensor`, *optional*):
886
+ Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
887
+ generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
888
+ tensor will ge generated by sampling using the supplied random `generator`.
889
+ prompt_embeds (`torch.FloatTensor`, *optional*):
890
+ Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
891
+ provided, text embeddings will be generated from `prompt` input argument.
892
+ pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
893
+ Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
894
+ If not provided, pooled text embeddings will be generated from `prompt` input argument.
895
+ ip_adapter_image: (`PipelineImageInput`, *optional*):
896
+ Optional image input to work with IP Adapters.
897
+ ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
898
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
899
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
900
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
901
+ negative_ip_adapter_image:
902
+ (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
903
+ negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
904
+ Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
905
+ IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not
906
+ provided, embeddings are computed from the `ip_adapter_image` input argument.
907
+ negative_prompt_embeds (`torch.FloatTensor`, *optional*):
908
+ Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
909
+ weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
910
+ argument.
911
+ negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
912
+ Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
913
+ weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
914
+ input argument.
915
+ output_type (`str`, *optional*, defaults to `"pil"`):
916
+ The output format of the generate image. Choose between
917
+ [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
918
+ return_dict (`bool`, *optional*, defaults to `True`):
919
+ Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple.
920
+ joint_attention_kwargs (`dict`, *optional*):
921
+ A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
922
+ `self.processor` in
923
+ [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
924
+ callback_on_step_end (`Callable`, *optional*):
925
+ A function that calls at the end of each denoising steps during the inference. The function is called
926
+ with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
927
+ callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
928
+ `callback_on_step_end_tensor_inputs`.
929
+ callback_on_step_end_tensor_inputs (`List`, *optional*):
930
+ The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
931
+ will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
932
+ `._callback_tensor_inputs` attribute of your pipeline class.
933
+ max_sequence_length (`int` defaults to 512):
934
+ Maximum sequence length to use with the `prompt`.
935
+ max_area (`int`, defaults to `1024 ** 2`):
936
+ The maximum area of the generated image in pixels. The height and width will be adjusted to fit this
937
+ area while maintaining the aspect ratio.
938
+ multiple_images (`PipelineSeveralImagesInput`, *optional*):
939
+ A list of images to be used as reference images for the generation. If provided, the pipeline will
940
+ merge the reference images in the latent space.
941
+
942
+ Examples:
943
+
944
+ Returns:
945
+ [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict`
946
+ is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated
947
+ images.
948
+ """
949
+
950
+ height = height or self.default_sample_size * self.vae_scale_factor
951
+ width = width or self.default_sample_size * self.vae_scale_factor
952
+
953
+ original_height, original_width = height, width
954
+ aspect_ratio = width / height
955
+ width = round((max_area * aspect_ratio) ** 0.5)
956
+ height = round((max_area / aspect_ratio) ** 0.5)
957
+
958
+ multiple_of = self.vae_scale_factor * 2
959
+ width = width // multiple_of * multiple_of
960
+ height = height // multiple_of * multiple_of
961
+
962
+ if height != original_height or width != original_width:
963
+ logger.warning(
964
+ f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements."
965
+ )
966
+
967
+ # 1. Check inputs. Raise error if not correct
968
+ self.check_inputs(
969
+ prompt,
970
+ prompt_2,
971
+ height,
972
+ width,
973
+ negative_prompt=negative_prompt,
974
+ negative_prompt_2=negative_prompt_2,
975
+ prompt_embeds=prompt_embeds,
976
+ negative_prompt_embeds=negative_prompt_embeds,
977
+ pooled_prompt_embeds=pooled_prompt_embeds,
978
+ negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
979
+ callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
980
+ max_sequence_length=max_sequence_length,
981
+ )
982
+
983
+ self._guidance_scale = guidance_scale
984
+ self._joint_attention_kwargs = joint_attention_kwargs
985
+ self._current_timestep = None
986
+ self._interrupt = False
987
+
988
+ # 2. Define call parameters
989
+ if prompt is not None and isinstance(prompt, str):
990
+ batch_size = 1
991
+ elif prompt is not None and isinstance(prompt, list):
992
+ batch_size = len(prompt)
993
+ else:
994
+ batch_size = prompt_embeds.shape[0]
995
+
996
+ device = self._execution_device
997
+
998
+ lora_scale = (
999
+ self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
1000
+ )
1001
+ has_neg_prompt = negative_prompt is not None or (
1002
+ negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None
1003
+ )
1004
+ do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
1005
+ (
1006
+ prompt_embeds,
1007
+ pooled_prompt_embeds,
1008
+ text_ids,
1009
+ ) = self.encode_prompt(
1010
+ prompt=prompt,
1011
+ prompt_2=prompt_2,
1012
+ prompt_embeds=prompt_embeds,
1013
+ pooled_prompt_embeds=pooled_prompt_embeds,
1014
+ device=device,
1015
+ num_images_per_prompt=num_images_per_prompt,
1016
+ max_sequence_length=max_sequence_length,
1017
+ lora_scale=lora_scale,
1018
+ )
1019
+ if do_true_cfg:
1020
+ (
1021
+ negative_prompt_embeds,
1022
+ negative_pooled_prompt_embeds,
1023
+ negative_text_ids,
1024
+ ) = self.encode_prompt(
1025
+ prompt=negative_prompt,
1026
+ prompt_2=negative_prompt_2,
1027
+ prompt_embeds=negative_prompt_embeds,
1028
+ pooled_prompt_embeds=negative_pooled_prompt_embeds,
1029
+ device=device,
1030
+ num_images_per_prompt=num_images_per_prompt,
1031
+ max_sequence_length=max_sequence_length,
1032
+ lora_scale=lora_scale,
1033
+ )
1034
+
1035
+ # 3. Preprocess image
1036
+ if image is not None and multiple_images is not None:
1037
+ raise ValueError("Cannot pass both `image` and `multiple_images`. Please use only one of them.")
1038
+ if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels):
1039
+ image = [self.preprocess_image(image, _auto_resize=True, multiple_of=multiple_of)]
1040
+ if multiple_images is not None:
1041
+ image = self.preprocess_images(
1042
+ multiple_images,
1043
+ _auto_resize=_auto_resize,
1044
+ multiple_of=multiple_of,
1045
+ )
1046
+
1047
+ # 4. Prepare latent variables
1048
+ num_channels_latents = self.transformer.config.in_channels // 4
1049
+ latents, image_latents, latent_ids, image_ids = self.prepare_latents(
1050
+ image,
1051
+ batch_size * num_images_per_prompt,
1052
+ num_channels_latents,
1053
+ height,
1054
+ width,
1055
+ prompt_embeds.dtype,
1056
+ device,
1057
+ generator,
1058
+ latents,
1059
+ )
1060
+ if image_ids is not None:
1061
+ latent_ids = torch.cat([latent_ids, image_ids], dim=0) # dim 0 is sequence dimension
1062
+
1063
+ # 5. Prepare timesteps
1064
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
1065
+ image_seq_len = latents.shape[1]
1066
+ mu = calculate_shift(
1067
+ image_seq_len,
1068
+ self.scheduler.config.get("base_image_seq_len", 256),
1069
+ self.scheduler.config.get("max_image_seq_len", 4096),
1070
+ self.scheduler.config.get("base_shift", 0.5),
1071
+ self.scheduler.config.get("max_shift", 1.15),
1072
+ )
1073
+ timesteps, num_inference_steps = retrieve_timesteps(
1074
+ self.scheduler,
1075
+ num_inference_steps,
1076
+ device,
1077
+ sigmas=sigmas,
1078
+ mu=mu,
1079
+ )
1080
+ num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
1081
+ self._num_timesteps = len(timesteps)
1082
+
1083
+ # handle guidance
1084
+ if self.transformer.config.guidance_embeds:
1085
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
1086
+ guidance = guidance.expand(latents.shape[0])
1087
+ else:
1088
+ guidance = None
1089
+
1090
+ if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and (
1091
+ negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None
1092
+ ):
1093
+ negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
1094
+ negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
1095
+
1096
+ elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and (
1097
+ negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None
1098
+ ):
1099
+ ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8)
1100
+ ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters
1101
+
1102
+ if self.joint_attention_kwargs is None:
1103
+ self._joint_attention_kwargs = {}
1104
+
1105
+ image_embeds = None
1106
+ negative_image_embeds = None
1107
+ if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
1108
+ image_embeds = self.prepare_ip_adapter_image_embeds(
1109
+ ip_adapter_image,
1110
+ ip_adapter_image_embeds,
1111
+ device,
1112
+ batch_size * num_images_per_prompt,
1113
+ )
1114
+ if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None:
1115
+ negative_image_embeds = self.prepare_ip_adapter_image_embeds(
1116
+ negative_ip_adapter_image,
1117
+ negative_ip_adapter_image_embeds,
1118
+ device,
1119
+ batch_size * num_images_per_prompt,
1120
+ )
1121
+
1122
+ # 6. Denoising loop
1123
+ # We set the index here to remove DtoH sync, helpful especially during compilation.
1124
+ # Check out more details here: https://github.com/huggingface/diffusers/pull/11696
1125
+ self.scheduler.set_begin_index(0)
1126
+ with self.progress_bar(total=num_inference_steps) as progress_bar:
1127
+ for i, t in enumerate(timesteps):
1128
+ if self.interrupt:
1129
+ continue
1130
+
1131
+ self._current_timestep = t
1132
+ if image_embeds is not None:
1133
+ self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds
1134
+
1135
+ latent_model_input = latents
1136
+ if image_latents is not None:
1137
+ latent_model_input = torch.cat([latents, image_latents], dim=1)
1138
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
1139
+
1140
+ noise_pred = self.transformer(
1141
+ hidden_states=latent_model_input,
1142
+ timestep=timestep / 1000,
1143
+ guidance=guidance,
1144
+ pooled_projections=pooled_prompt_embeds,
1145
+ encoder_hidden_states=prompt_embeds,
1146
+ txt_ids=text_ids,
1147
+ img_ids=latent_ids,
1148
+ joint_attention_kwargs=self.joint_attention_kwargs,
1149
+ return_dict=False,
1150
+ )[0]
1151
+ noise_pred = noise_pred[:, : latents.size(1)]
1152
+
1153
+ if do_true_cfg:
1154
+ if negative_image_embeds is not None:
1155
+ self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds
1156
+ neg_noise_pred = self.transformer(
1157
+ hidden_states=latent_model_input,
1158
+ timestep=timestep / 1000,
1159
+ guidance=guidance,
1160
+ pooled_projections=negative_pooled_prompt_embeds,
1161
+ encoder_hidden_states=negative_prompt_embeds,
1162
+ txt_ids=negative_text_ids,
1163
+ img_ids=latent_ids,
1164
+ joint_attention_kwargs=self.joint_attention_kwargs,
1165
+ return_dict=False,
1166
+ )[0]
1167
+ neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
1168
+ noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
1169
+
1170
+ # compute the previous noisy sample x_t -> x_t-1
1171
+ latents_dtype = latents.dtype
1172
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
1173
+
1174
+ if latents.dtype != latents_dtype:
1175
+ if torch.backends.mps.is_available():
1176
+ # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
1177
+ latents = latents.to(latents_dtype)
1178
+
1179
+ if callback_on_step_end is not None:
1180
+ callback_kwargs = {}
1181
+ for k in callback_on_step_end_tensor_inputs:
1182
+ callback_kwargs[k] = locals()[k]
1183
+ callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
1184
+
1185
+ latents = callback_outputs.pop("latents", latents)
1186
+ prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
1187
+
1188
+ # call the callback, if provided
1189
+ if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
1190
+ progress_bar.update()
1191
+
1192
+ if XLA_AVAILABLE:
1193
+ xm.mark_step()
1194
+
1195
+ self._current_timestep = None
1196
+
1197
+ if output_type == "latent":
1198
+ image = latents
1199
+ else:
1200
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
1201
+ latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
1202
+ image = self.vae.decode(latents, return_dict=False)[0]
1203
+ image = self.image_processor.postprocess(image, output_type=output_type)
1204
+
1205
+ # Offload all models
1206
+ self.maybe_free_model_hooks()
1207
+
1208
+ if not return_dict:
1209
+ return (image,)
1210
+
1211
+ return FluxPipelineOutput(images=image)