|
import os; os.environ["CUDA_VISIBLE_DEVICES"]="0" |
|
|
|
import torch |
|
from torch.utils import benchmark |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, Mxfp4Config |
|
|
|
def load_model(in_mxfp4): |
|
model_id = "openai/gpt-oss-20b" |
|
if not in_mxfp4: |
|
quantization_config = Mxfp4Config(dequantize=True) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
dtype="auto", |
|
device_map="cuda:0", |
|
use_kernels=True, |
|
quantization_config=quantization_config, |
|
).eval() |
|
|
|
else: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
dtype="auto", |
|
device_map="cuda:0", |
|
).eval() |
|
|
|
return model |
|
|
|
def generate(model, model_inputs, max_new_tokens): |
|
with torch.inference_mode(): |
|
model.generate( |
|
**model_inputs, |
|
do_sample=False, |
|
temperature=None, |
|
max_new_tokens=max_new_tokens, |
|
eos_token_id=-1, |
|
disable_compile=True, |
|
) |
|
|
|
if __name__ == "__main__": |
|
results = [] |
|
max_new_tokens = 256 |
|
batch_size = 256 |
|
base_prompts = [ |
|
"What is Tensor Parallelism?", |
|
"Explain machine learning fundamentals.", |
|
"How do neural networks work?", |
|
"What are the benefits of distributed computing?", |
|
"Describe the attention mechanism in transformers.", |
|
"What is gradient descent?", |
|
"How does backpropagation work?", |
|
"Explain the concept of overfitting.", |
|
] |
|
for in_mxfp4 in [True, False]: |
|
model = load_model(in_mxfp4) |
|
for batch_size in [32, 64, 128, 256]: |
|
messages = [ |
|
[{"role": "system", "content": base_prompts[i % len(base_prompts)]}] for i in range(batch_size) |
|
] |
|
tokenizer = AutoTokenizer.from_pretrained("openai/gpt-oss-20b") |
|
texts = [tokenizer.apply_chat_template(m, add_generation_prompt=True, tokenize=False, reasoning_effort="low") for m in messages] |
|
inputs = tokenizer( |
|
texts, |
|
return_tensors="pt", |
|
padding=True, |
|
padding_side="left", |
|
).to("cuda:0") |
|
|
|
label = "time taken to generate" |
|
results.append( |
|
benchmark.Timer( |
|
stmt="generate(model, model_inputs, max_new_tokens)", |
|
setup='from __main__ import generate', |
|
globals={"model": model, "model_inputs": inputs, "max_new_tokens": max_new_tokens}, |
|
num_threads=torch.get_num_threads(), |
|
label=label, |
|
sub_label=f"num tokens: {max_new_tokens} batch size: {batch_size}", |
|
description=f"in mxfp4: {in_mxfp4}" |
|
).timeit(5) |
|
) |
|
inputs.to("cpu") |
|
del inputs |
|
|
|
model.to("cpu") |
|
del model |
|
|
|
compare = benchmark.Compare(results) |
|
compare.print() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|