harpreetsahota commited on
Commit
56c71a8
·
verified ·
1 Parent(s): 0474194

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +37 -71
README.md CHANGED
@@ -46,7 +46,7 @@ dataset_summary: '
46
 
47
  # Note: other available arguments include ''max_samples'', etc
48
 
49
- dataset = load_from_hub("harpreetsahota/SkyScenes")
50
 
51
 
52
  # Launch the App
@@ -60,9 +60,6 @@ dataset_summary: '
60
 
61
  # Dataset Card for SkyScenes
62
 
63
- <!-- Provide a quick summary of the dataset. -->
64
-
65
-
66
 
67
 
68
 
@@ -84,7 +81,7 @@ from fiftyone.utils.huggingface import load_from_hub
84
 
85
  # Load the dataset
86
  # Note: other available arguments include 'max_samples', etc
87
- dataset = load_from_hub("harpreetsahota/SkyScenes")
88
 
89
  # Launch the App
90
  session = fo.launch_app(dataset)
@@ -93,9 +90,14 @@ session = fo.launch_app(dataset)
93
 
94
  ## Dataset Details
95
 
96
-
97
  SkyScenes is a comprehensive synthetic dataset for aerial scene understanding that was recently accepted to ECCV 2024. The dataset contains 33,600 aerial images captured from UAV perspectives using the CARLA simulator.
98
 
 
 
 
 
 
 
99
  ### Dataset Structure
100
  - **Images**: RGB images captured across multiple variations:
101
  - 8 different town layouts (7 urban + 1 rural)
@@ -123,85 +125,49 @@ Each image comes with dense pixel-level annotations for:
123
  - H_60_P_0 (60m height, 0° pitch)
124
  -
125
  - **Weather Condition**: ClearNoon only
126
- -
127
  - **Town Layouts**: Town01, Town02, Town05, Town07
128
- -
129
  - **Data Modalities**:
130
  - RGB Images
131
  - Depth Maps
132
  - Semantic Segmentation
133
 
 
134
 
 
135
 
136
- - **Curated by:** [More Information Needed]
137
- - **Funded by [optional]:** [More Information Needed]
138
- - **Shared by [optional]:** [More Information Needed]
139
- - **Language(s) (NLP):** en
140
- - **License:** [More Information Needed]
141
-
142
- ### Dataset Sources [optional]
143
-
144
- <!-- Provide the basic links for the dataset. -->
145
-
146
- - **Repository:** [More Information Needed]
147
- - **Paper [optional]:** [More Information Needed]
148
- - **Demo [optional]:** [More Information Needed]
149
-
150
- ## Uses
151
-
152
- <!-- Address questions around how the dataset is intended to be used. -->
153
-
154
- ### Direct Use
155
-
156
- <!-- This section describes suitable use cases for the dataset. -->
157
-
158
- [More Information Needed]
159
-
160
- ### Out-of-Scope Use
161
-
162
- <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. -->
163
-
164
- [More Information Needed]
165
-
166
- ## Dataset Structure
167
-
168
- <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
169
-
170
- [More Information Needed]
171
-
172
- ## Dataset Creation
173
-
174
- ### Curation Rationale
175
-
176
- <!-- Motivation for the creation of this dataset. -->
177
-
178
- [More Information Needed]
179
-
180
- ### Source Data
181
-
182
- <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
183
-
184
- #### Data Collection and Processing
185
-
186
- <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
187
-
188
- [More Information Needed]
189
-
190
- #### Who are the source data producers?
191
-
192
- <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
193
 
194
- [More Information Needed]
195
 
196
- ### Annotations [optional]
197
 
198
- <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. -->
 
 
 
199
 
200
- #### Annotation process
 
 
 
 
 
 
 
201
 
202
- <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. -->
 
 
203
 
204
- [More Information Needed]
 
 
 
 
 
 
205
 
206
  ## References
207
 
 
46
 
47
  # Note: other available arguments include ''max_samples'', etc
48
 
49
+ dataset = load_from_hub("Voxel51/SkyScenes")
50
 
51
 
52
  # Launch the App
 
60
 
61
  # Dataset Card for SkyScenes
62
 
 
 
 
63
 
64
 
65
 
 
81
 
82
  # Load the dataset
83
  # Note: other available arguments include 'max_samples', etc
84
+ dataset = load_from_hub("Voxel51/SkyScenes")
85
 
86
  # Launch the App
87
  session = fo.launch_app(dataset)
 
90
 
91
  ## Dataset Details
92
 
 
93
  SkyScenes is a comprehensive synthetic dataset for aerial scene understanding that was recently accepted to ECCV 2024. The dataset contains 33,600 aerial images captured from UAV perspectives using the CARLA simulator.
94
 
95
+ - **Curated by:** [Sahil Khose](https://sahilkhose.github.io/), Anisha Pal, Aayushi Agarwal, Deepanshi, Judy Hoffman, Prithvijit Chattopadhyay
96
+ - **Funded by:** Georgia Institute of Technology
97
+ - **Shared by:** [Harpreet Sahota](https://huggingface.co/harpreetsahota), Hacker-in-Residence at Voxel51
98
+ - **Language(s) (NLP):** en
99
+ - **License:** MIT License
100
+
101
  ### Dataset Structure
102
  - **Images**: RGB images captured across multiple variations:
103
  - 8 different town layouts (7 urban + 1 rural)
 
125
  - H_60_P_0 (60m height, 0° pitch)
126
  -
127
  - **Weather Condition**: ClearNoon only
 
128
  - **Town Layouts**: Town01, Town02, Town05, Town07
 
129
  - **Data Modalities**:
130
  - RGB Images
131
  - Depth Maps
132
  - Semantic Segmentation
133
 
134
+ If you wish to work with the full dataset in FiftyOne format, you can use the [following repo](https://github.com/harpreetsahota204/skyscenes-to-fiftyone).
135
 
136
+ ### Dataset Sources
137
 
138
+ - **Repository:** https://github.com/hoffman-group/SkyScenes
139
+ - **Paper:** https://arxiv.org/abs/2312.06719
140
+ - **Demo:** https://hoffman-group.github.io/SkyScenes/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141
 
142
+ # Uses
143
 
144
+ The dataset contains 33.6k densely annotated synthetic aerial images with comprehensive metadata and annotations, making it suitable for both training and systematic evaluation of aerial scene understanding models.
145
 
146
+ ## Training and Pre-training
147
+ - Functions as a pre-training dataset for real-world aerial scene understanding models
148
+ - Models trained on SkyScenes demonstrate strong generalization to real-world scenarios
149
+ - Can effectively augment real-world training data to improve overall model performance
150
 
151
+ ## Model Evaluation and Testing
152
+ **Diagnostic Testing**
153
+ - Serves as a test bed for assessing model sensitivity to various conditions including:
154
+ - Weather changes
155
+ - Time of day variations
156
+ - Different pitch angles
157
+ - Various altitudes
158
+ - Different layout types
159
 
160
+ **Multi-modal Development**
161
+ - Enables development of multi-modal segmentation models by incorporating depth information alongside visual data
162
+ - Supports testing how additional sensor modalities can improve aerial scene recognition capabilities
163
 
164
+ ## Research Applications
165
+ - Enables studying synthetic-to-real domain adaptation for aerial imagery
166
+ - Provides controlled variations for analyzing model behavior under different viewing conditions
167
+ - Supports development of models for:
168
+ - Semantic segmentation
169
+ - Instance segmentation
170
+ - Depth estimation
171
 
172
  ## References
173