Upload 5 files
Browse files- README.md +20 -0
- app.py +63 -0
- movie_dict.pkl +3 -0
- movie_recommendation_system.ipynb +0 -0
- movies.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
# Movie Recommendation System🚀
|
3 |
+
|
4 |
+
A movie recommender that recommends five movies based on the movie input.
|
5 |
+
It uses a KNN model that works on the concept text vectorization.
|
6 |
+
|
7 |
+
|
8 |
+
## Screenshots
|
9 |
+
|
10 |
+

|
11 |
+
---
|
12 |
+

|
13 |
+
---
|
14 |
+

|
15 |
+
---
|
16 |
+

|
17 |
+
|
18 |
+
|
19 |
+
### Try it on your own 💻
|
20 |
+
[Movie Recommendation System Deployment](https://huggingface.co/spaces/coder003/movie-recommender)
|
app.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
import requests
|
5 |
+
|
6 |
+
|
7 |
+
def fetch_poster(movie_id):
|
8 |
+
url = "https://api.themoviedb.org/3/movie/{}?api_key=fe34a557846e9a676a98fd362f059b28&language=en-US".format(
|
9 |
+
movie_id)
|
10 |
+
response = requests.get(url)
|
11 |
+
data = response.json()
|
12 |
+
poster_path = data['poster_path']
|
13 |
+
full_path = "https://image.tmdb.org/t/p/w500/" + poster_path
|
14 |
+
return full_path
|
15 |
+
|
16 |
+
|
17 |
+
def recommend(movie):
|
18 |
+
movie_index = movies[movies['title'] == movie].index[0]
|
19 |
+
distances = similarity[movie_index]
|
20 |
+
movies_list = sorted(list(enumerate(distances)), reverse=True, key=lambda x: x[1])[1:6]
|
21 |
+
|
22 |
+
recommended_movies = []
|
23 |
+
recommended_movies_posters = []
|
24 |
+
for i in movies_list:
|
25 |
+
movie_id = movies.iloc[i[0]].movie_id
|
26 |
+
|
27 |
+
recommended_movies.append(movies.iloc[i[0]].title)
|
28 |
+
# using movie_id fetch poster from API
|
29 |
+
recommended_movies_posters.append(fetch_poster(movie_id))
|
30 |
+
return recommended_movies,recommended_movies_posters
|
31 |
+
|
32 |
+
|
33 |
+
st.title('Movie Recommender System')
|
34 |
+
st.text('👨🏻💻 by Vividh Pandey')
|
35 |
+
movies_dict = pickle.load(open('movie_dict.pkl', 'rb'))
|
36 |
+
movies = pd.DataFrame(movies_dict)
|
37 |
+
|
38 |
+
similarity = pickle.load(open('similarity.pkl', 'rb'))
|
39 |
+
|
40 |
+
movie_list = movies['title'].values
|
41 |
+
selected_movie_name = st.selectbox(
|
42 |
+
"Type or select a movie from the dropdown",
|
43 |
+
movies['title'].values
|
44 |
+
)
|
45 |
+
|
46 |
+
if st.button('Show Recommendation'):
|
47 |
+
names,posters = recommend(selected_movie_name)
|
48 |
+
col1, col2, col3, col4, col5 = st.columns(5)
|
49 |
+
with col1:
|
50 |
+
st.text(names[0])
|
51 |
+
st.image(posters[0])
|
52 |
+
with col2:
|
53 |
+
st.text(names[1])
|
54 |
+
st.image(posters[1])
|
55 |
+
with col3:
|
56 |
+
st.text(names[2])
|
57 |
+
st.image(posters[2])
|
58 |
+
with col4:
|
59 |
+
st.text(names[3])
|
60 |
+
st.image(posters[3])
|
61 |
+
with col5:
|
62 |
+
st.text(names[4])
|
63 |
+
st.image(posters[4])
|
movie_dict.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e9a65940b6abc3091a4a6b8891226aa9d18c98e536138b6f79ceaef8ac8e95ec
|
3 |
+
size 2216684
|
movie_recommendation_system.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
movies.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1aed44f66872a07f849a2472c6aeb2294cfb0e01562ed41db3925cd2e6d22c48
|
3 |
+
size 2235322
|