File size: 8,874 Bytes
410ae2c a65a2e6 d059b0e 410ae2c d059b0e 410ae2c a65a2e6 410ae2c a65a2e6 410ae2c a65a2e6 410ae2c a65a2e6 410ae2c a65a2e6 410ae2c a65a2e6 410ae2c a65a2e6 410ae2c 9b2188a 410ae2c a65a2e6 410ae2c a65a2e6 410ae2c a65a2e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
"""
CUPE: Easy usage with automatic downloading from Hugging Face Hub
"""
import torch
import torchaudio
from huggingface_hub import hf_hub_download
import importlib.util
import sys
import os
def load_cupe_model(model_name="english", device="auto"):
"""
Load CUPE model with automatic downloading from Hugging Face Hub
Args:
model_name: "english", "multilingual-mls", or "multilingual-mswc"
device: "auto", "cpu", or "cuda"
Returns:
Tuple of (extractor, windowing_module)
"""
# Model checkpoint mapping
model_files = {
"english": "en_libri1000_uj01d_e199_val_GER=0.2307.ckpt",
"multilingual-mls": "multi_MLS8_uh02_e36_val_GER=0.2334.ckpt",
"multilingual-mswc": "multi_mswc38_ug20_e59_val_GER=0.5611.ckpt"
}
if model_name not in model_files:
raise ValueError(f"Model {model_name} not available. Choose from: {list(model_files.keys())}")
if device == "auto":
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Loading CUPE {model_name} model...")
# Download model files from Hugging Face Hub
repo_id = "Tabahi/CUPE-2i"
model_file = hf_hub_download(repo_id=repo_id, filename="model2i.py")
windowing_file = hf_hub_download(repo_id=repo_id, filename="windowing.py")
mapper_file = hf_hub_download(repo_id=repo_id, filename="mapper.py")
model_utils_file = hf_hub_download(repo_id=repo_id, filename="model_utils.py")
checkpoint_file = hf_hub_download(repo_id=repo_id, filename=f"ckpt/{model_files[model_name]}")
# Dynamically import the modules
def import_module_from_file(module_name, file_path):
spec = importlib.util.spec_from_file_location(module_name, file_path)
module = importlib.util.module_from_spec(spec)
sys.modules[module_name] = module
spec.loader.exec_module(module)
return module
_ = import_module_from_file("model_utils", model_utils_file)
model2i = import_module_from_file("model2i", model_file)
windowing = import_module_from_file("windowing", windowing_file)
mapper = import_module_from_file("mapper", mapper_file)
phoneme_to_token = mapper.phoneme_mapped_index
token_to_phoneme = {v: k for k, v in phoneme_to_token.items()}
group_to_token = mapper.phoneme_groups_index
token_to_group = {v: k for k, v in group_to_token.items()}
# Initialize the model
extractor = model2i.CUPEEmbeddingsExtractor(checkpoint_file, device=device)
print(f"Model loaded on {device}")
return extractor, windowing, token_to_phoneme, token_to_group
def predict_phonemes(audio_path, model_name="english", device="auto"):
"""
Predict phonemes from audio file
Args:
audio_path: Path to audio file
model_name: CUPE model variant to use
device: Device to run inference on
Returns:
Dictionary with predictions and metadata
"""
# Load model
extractor, windowing, token_to_phoneme, token_to_group = load_cupe_model(model_name, device)
# Audio processing parameters
sample_rate = 16000
window_size_ms = 120
stride_ms = 80
# Load and preprocess audio
audio, orig_sr = torchaudio.load(audio_path)
# Convert to mono if stereo
if audio.shape[0] > 1:
audio = audio.mean(dim=0, keepdim=True)
resampler = torchaudio.transforms.Resample(
sample_rate,
lowpass_filter_width=64,
rolloff=0.9475937167399596,
resampling_method="sinc_interp_kaiser",
beta=14.769656459379492,
)
# Always use resampler for consistency
audio = resampler(audio)
# Move to device and add batch dimension
audio = audio.to(device)
audio_batch = audio.unsqueeze(0)
print(f"Processing audio: {audio.shape[1]/sample_rate:.2f}s duration")
# Window the audio
windowed_audio = windowing.slice_windows(
audio_batch,
sample_rate,
window_size_ms,
stride_ms
)
batch_size, num_windows, window_size = windowed_audio.shape
windows_flat = windowed_audio.reshape(-1, window_size)
# Get model predictions
logits_phonemes, logits_groups = extractor.predict(
windows_flat,
return_embeddings=False,
groups_only=False
)
# Reshape and stitch predictions
frames_per_window = logits_phonemes.shape[1]
logits_phonemes = logits_phonemes.reshape(batch_size, num_windows, frames_per_window, -1)
logits_groups = logits_groups.reshape(batch_size, num_windows, frames_per_window, -1)
phoneme_logits = windowing.stich_window_predictions(
logits_phonemes,
original_audio_length=audio_batch.size(2),
cnn_output_size=frames_per_window,
sample_rate=sample_rate,
window_size_ms=window_size_ms,
stride_ms=stride_ms
)
group_logits = windowing.stich_window_predictions(
logits_groups,
original_audio_length=audio_batch.size(2),
cnn_output_size=frames_per_window,
sample_rate=sample_rate,
window_size_ms=window_size_ms,
stride_ms=stride_ms
)
# Convert to probabilities and predictions
phoneme_probs = torch.softmax(phoneme_logits.squeeze(0), dim=-1)
group_probs = torch.softmax(group_logits.squeeze(0), dim=-1)
phoneme_preds = torch.argmax(phoneme_probs, dim=-1)
group_preds = torch.argmax(group_probs, dim=-1)
phonemes_sequence = [token_to_phoneme[int(p)] for p in phoneme_preds.cpu().numpy()]
groups_sequence = [token_to_group[int(g)] for g in group_preds.cpu().numpy()]
# remove noise
phonemes_sequence = [p for p in phonemes_sequence if p != 'noise']
groups_sequence = [g for g in groups_sequence if g != 'noise']
# Calculate timestamps (approximately 16ms per frame)
num_frames = phoneme_probs.shape[0]
print(f"Processed {num_frames} frames ({num_frames*16}ms total)")
return {
'phoneme_probabilities': phoneme_probs.cpu().numpy(),
'phoneme_predictions': phoneme_preds.cpu().numpy(),
'group_probabilities': group_probs.cpu().numpy(),
'group_predictions': group_preds.cpu().numpy(),
'phonemes_sequence': phonemes_sequence,
'groups_sequence': groups_sequence,
'model_info': {
'model_name': model_name,
'sample_rate': sample_rate,
'frames_per_second': 1000/16, # ~62.5 fps
'num_phoneme_classes': phoneme_probs.shape[-1],
'num_group_classes': group_probs.shape[-1]
}
}
# Example usage
if __name__ == "__main__":
# Simple example
audio_file = "samples/109867__timkahn__butterfly.wav.wav" # Replace with your audio file
if not os.path.exists(audio_file):
print(f"Audio file {audio_file} does not exist. Please provide a valid path.")
sys.exit(1)
torch.manual_seed(42) # For reproducibility
# Predict with English model
results = predict_phonemes(
audio_path=audio_file,
model_name="english", # or "multilingual-mls" or "multilingual-mswc"
device="cpu"
)
print(f"\nResults:")
print(f"Phoneme predictions shape: {results['phoneme_predictions'].shape}")
print(f"Group predictions shape: {results['group_predictions'].shape}")
print(f"Model info: {results['model_info']}")
# Show first 10 predictions with timestamps
print(f"\nFirst 10 frame predictions:")
for i in range(min(10, len(results['phoneme_predictions']))):
print(f"Frame {i}: phoneme={results['phoneme_predictions'][i]}, "
f"group={results['group_predictions'][i]}")
print(f"\nPhonemes sequence: {results['phonemes_sequence'][:10]}...") # Show first 10 phonemes
print(f"Groups sequence: {results['groups_sequence'][:10]}...")
''' output:
Loading CUPE english model...
Model loaded on cpu
Processing audio: 1.26s duration
Processed 75 frames (1200ms total)
Results:
Phoneme predictions shape: (75,)
Group predictions shape: (75,)
Model info: {'model_name': 'english', 'sample_rate': 16000, 'frames_per_second': 62.5, 'num_phoneme_classes': 67, 'num_group_classes': 17}
First 10 frame predictions:
Frame 0: phoneme=66, group=16
Frame 1: phoneme=66, group=16
Frame 2: phoneme=29, group=7
Frame 3: phoneme=66, group=16
Frame 4: phoneme=66, group=16
Frame 5: phoneme=66, group=16
Frame 6: phoneme=10, group=2
Frame 7: phoneme=66, group=16
Frame 8: phoneme=66, group=16
Frame 9: phoneme=66, group=16
Phonemes sequence: ['b', 'ʌ', 't', 'h', 'ʌ', 'f', 'l', 'æ']...
Groups sequence: ['voiced_stops', 'central_vowels', 'voiceless_stops', 'voiceless_fricatives', 'central_vowels', 'voiceless_fricatives', 'laterals', 'low_vowels']...
'''
|