File size: 7,755 Bytes
9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 c41b585 9efb9d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "initial_id",
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import os\n",
"from typing import Dict, List\n",
"\n",
"IS_COLAB = True if \"GOOGLE_CLOUD_PROJECT\" in os.environ else False\n",
"if IS_COLAB:\n",
" # this needs to run before all other imports\n",
" os.environ[\"HF_HOME\"] = \"/content/cache/\" # to avoid running out of disk space\n",
"\n",
"import mteb\n",
"import numpy as np\n",
"import torch\n",
"from mteb.encoder_interface import PromptType\n",
"from sentence_transformers import SentenceTransformer"
]
},
{
"cell_type": "markdown",
"id": "5325acfb",
"metadata": {},
"source": [
"### Notebook Configuration"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f0189ff1e7814a5a",
"metadata": {},
"outputs": [],
"source": [
"MODELS = {\n",
" \"ir-prod\": {\n",
" \"name\": \"MongoDB/mdbr-leaf-ir\",\n",
" \"revision\": \"2e46f5aac796e621d51f678c306a66ede4712ecb\",\n",
" \"teacher\": \"Snowflake/snowflake-arctic-embed-m-v1.5\",\n",
" },\n",
" \"ir-paper\": {\n",
" \"name\": \"MongoDB/mdbr-leaf-ir\",\n",
" \"revision\": \"ea98995e96beac21b820aa8ad9afaa6fd29b243d\",\n",
" \"teacher\": \"Snowflake/snowflake-arctic-embed-m-v1.5\",\n",
" },\n",
" \"mt-prod\": {\n",
" \"name\": \"MongoDB/mdbr-leaf-mt\",\n",
" \"revision\": \"66c47ba6d753efc208d54412b5af6c744a39a4df\",\n",
" \"teacher\": \"mixedbread-ai/mxbai-embed-large-v1\",\n",
" },\n",
" \"mt-paper\": {\n",
" \"name\": \"MongoDB/mdbr-leaf-mt\",\n",
" \"revision\": \"c342f945a6855346bd5f48d5ee8b7e39120b0ce9\",\n",
" \"teacher\": \"mixedbread-ai/mxbai-embed-large-v1\",\n",
" },\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "371c6122efdf476a",
"metadata": {},
"source": [
"In the cell below:\n",
"* set the output folder and\n",
"* select one of the models defined above\n",
"* desired benchmark"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "58d52a330febb9ac",
"metadata": {},
"outputs": [],
"source": [
"# output_folder = f\"../../data/results/publish/\"\n",
"output_folder = f\"/content/data/results/publish/\"\n",
"\n",
"model_selection = MODELS[\"ir-prod\"]\n",
"benchmark_name = \"BEIR\"\n",
"\n",
"# model_selection = MODELS['mt-prod']\n",
"# benchmark_name = \"MTEB(eng, v2)\""
]
},
{
"cell_type": "markdown",
"id": "1b4367afc1278e",
"metadata": {},
"source": [
"### Run Evals"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "c716c6344f9cd939",
"metadata": {},
"outputs": [],
"source": [
"benchmark = mteb.get_benchmark(benchmark_name)\n",
"evaluation = mteb.MTEB(tasks=benchmark)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d6f13945a94f7a85",
"metadata": {},
"outputs": [],
"source": [
"model = SentenceTransformer(model_selection[\"name\"], revision=model_selection[\"revision\"])\n",
"\n",
"# alternative:\n",
"# meta = mteb.get_model_meta(\n",
"# model_name=model_selection['name'],\n",
"# revision=model_selection['revision']\n",
"# )\n",
"# model = meta.load_model()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9bd44e88fc360663",
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"results = evaluation.run(\n",
" model=model,\n",
" verbosity=1,\n",
" output_folder=output_folder,\n",
" overwrite_results=True,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "733e52ca41cf92a7",
"metadata": {},
"source": [
"Evaluate Quora"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "61aea9a04468202f",
"metadata": {},
"outputs": [],
"source": [
"if model_selection[\"name\"].endswith(\"ir\"):\n",
" # quora is closer to a sentence similarity task than a retrieval one, as queries aren't proper user queries\n",
" # we thus embed them without the typical query prompt\n",
" model.prompts = {}\n",
" tasks = mteb.get_tasks(\n",
" tasks=[\n",
" \"QuoraRetrieval\",\n",
" ]\n",
" )\n",
"\n",
" evaluation = mteb.MTEB(tasks=tasks)\n",
" results = evaluation.run(\n",
" model=model,\n",
" verbosity=1,\n",
" output_folder=output_folder,\n",
" overwrite_results=True,\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "6a6c164e",
"metadata": {},
"source": [
"### Asymmetric Mode\n",
"\n",
"Compute asymmetric mode scores: queries encoded by `leaf`, documents by the original teacher model."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "487ba349",
"metadata": {},
"outputs": [],
"source": [
"class AsymmetricModel:\n",
" def __init__(\n",
" self,\n",
" doc_model: SentenceTransformer,\n",
" query_model: SentenceTransformer,\n",
" ) -> None:\n",
" self.doc_model = doc_model\n",
" self.query_model = query_model\n",
"\n",
" def encode(self, sentences: List[str], **kwargs) -> np.ndarray | torch.Tensor:\n",
" if \"prompt_type\" not in kwargs:\n",
" kwargs[\"prompt_type\"] = None\n",
"\n",
" match kwargs[\"prompt_type\"]:\n",
" case PromptType.query:\n",
" out = self.query_model.encode(sentences, prompt_name=\"query\", **kwargs)\n",
"\n",
" case PromptType.document:\n",
" out = self.doc_model.encode(sentences, **kwargs)\n",
"\n",
" case None:\n",
" print(\"No prompt type: using query (leaf) model for encoding\")\n",
" out = self.query_model.encode(sentences, **kwargs)\n",
" case _:\n",
" raise ValueError(f\"Encoding unknown type: {kwargs['prompt_type']}\")\n",
"\n",
" if not isinstance(out, torch.Tensor):\n",
" out = torch.from_numpy(out)\n",
"\n",
" out = out.to(\"cpu\")\n",
" return out"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4162af7f",
"metadata": {},
"outputs": [],
"source": [
"leaf = SentenceTransformer(model_selection[\"name\"], revision=model_selection[\"revision\"])\n",
"teacher = SentenceTransformer(model_selection[\"teacher\"])\n",
"\n",
"asymm_model = AsymmetricModel(\n",
" query_model=leaf,\n",
" doc_model=teacher,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "848d8a5f",
"metadata": {},
"outputs": [],
"source": [
"%%time\n",
"results = evaluation.run(\n",
" model=asymm_model,\n",
" verbosity=1,\n",
" output_folder=output_folder,\n",
" overwrite_results=True,\n",
")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|