File size: 7,755 Bytes
9efb9d8
 
 
 
c41b585
9efb9d8
 
 
 
c41b585
9efb9d8
 
c41b585
9efb9d8
c41b585
9efb9d8
 
c41b585
9efb9d8
 
c41b585
 
 
9efb9d8
c41b585
9efb9d8
 
c41b585
 
9efb9d8
c41b585
 
 
 
 
9efb9d8
c41b585
 
 
 
9efb9d8
 
c41b585
 
 
 
9efb9d8
c41b585
 
 
 
9efb9d8
c41b585
 
 
 
 
 
 
 
 
9efb9d8
 
c41b585
9efb9d8
 
 
c41b585
 
9efb9d8
c41b585
9efb9d8
 
 
c41b585
9efb9d8
 
 
c41b585
 
 
 
9efb9d8
c41b585
 
9efb9d8
c41b585
9efb9d8
 
 
 
c41b585
9efb9d8
 
 
c41b585
 
 
 
 
9efb9d8
 
c41b585
 
 
9efb9d8
c41b585
 
 
 
 
 
 
9efb9d8
c41b585
 
 
 
9efb9d8
c41b585
9efb9d8
 
 
 
 
 
 
c41b585
9efb9d8
 
 
c41b585
 
9efb9d8
c41b585
9efb9d8
 
 
 
 
 
 
 
c41b585
9efb9d8
 
 
c41b585
 
 
 
 
9efb9d8
 
 
c41b585
 
 
 
9efb9d8
c41b585
9efb9d8
 
 
c41b585
 
 
 
 
9efb9d8
 
 
 
 
 
 
 
c41b585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9efb9d8
c41b585
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9efb9d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "initial_id",
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "import os\n",
    "from typing import Dict, List\n",
    "\n",
    "IS_COLAB = True if \"GOOGLE_CLOUD_PROJECT\" in os.environ else False\n",
    "if IS_COLAB:\n",
    "    # this needs to run before all other imports\n",
    "    os.environ[\"HF_HOME\"] = \"/content/cache/\"  # to avoid running out of disk space\n",
    "\n",
    "import mteb\n",
    "import numpy as np\n",
    "import torch\n",
    "from mteb.encoder_interface import PromptType\n",
    "from sentence_transformers import SentenceTransformer"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5325acfb",
   "metadata": {},
   "source": [
    "### Notebook Configuration"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f0189ff1e7814a5a",
   "metadata": {},
   "outputs": [],
   "source": [
    "MODELS = {\n",
    "    \"ir-prod\": {\n",
    "        \"name\": \"MongoDB/mdbr-leaf-ir\",\n",
    "        \"revision\": \"2e46f5aac796e621d51f678c306a66ede4712ecb\",\n",
    "        \"teacher\": \"Snowflake/snowflake-arctic-embed-m-v1.5\",\n",
    "    },\n",
    "    \"ir-paper\": {\n",
    "        \"name\": \"MongoDB/mdbr-leaf-ir\",\n",
    "        \"revision\": \"ea98995e96beac21b820aa8ad9afaa6fd29b243d\",\n",
    "        \"teacher\": \"Snowflake/snowflake-arctic-embed-m-v1.5\",\n",
    "    },\n",
    "    \"mt-prod\": {\n",
    "        \"name\": \"MongoDB/mdbr-leaf-mt\",\n",
    "        \"revision\": \"66c47ba6d753efc208d54412b5af6c744a39a4df\",\n",
    "        \"teacher\": \"mixedbread-ai/mxbai-embed-large-v1\",\n",
    "    },\n",
    "    \"mt-paper\": {\n",
    "        \"name\": \"MongoDB/mdbr-leaf-mt\",\n",
    "        \"revision\": \"c342f945a6855346bd5f48d5ee8b7e39120b0ce9\",\n",
    "        \"teacher\": \"mixedbread-ai/mxbai-embed-large-v1\",\n",
    "    },\n",
    "}"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "371c6122efdf476a",
   "metadata": {},
   "source": [
    "In the cell below:\n",
    "* set the output folder and\n",
    "* select one of the models defined above\n",
    "* desired benchmark"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "58d52a330febb9ac",
   "metadata": {},
   "outputs": [],
   "source": [
    "# output_folder = f\"../../data/results/publish/\"\n",
    "output_folder = f\"/content/data/results/publish/\"\n",
    "\n",
    "model_selection = MODELS[\"ir-prod\"]\n",
    "benchmark_name = \"BEIR\"\n",
    "\n",
    "# model_selection = MODELS['mt-prod']\n",
    "# benchmark_name = \"MTEB(eng, v2)\""
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1b4367afc1278e",
   "metadata": {},
   "source": [
    "### Run Evals"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c716c6344f9cd939",
   "metadata": {},
   "outputs": [],
   "source": [
    "benchmark = mteb.get_benchmark(benchmark_name)\n",
    "evaluation = mteb.MTEB(tasks=benchmark)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d6f13945a94f7a85",
   "metadata": {},
   "outputs": [],
   "source": [
    "model = SentenceTransformer(model_selection[\"name\"], revision=model_selection[\"revision\"])\n",
    "\n",
    "# alternative:\n",
    "# meta = mteb.get_model_meta(\n",
    "#     model_name=model_selection['name'],\n",
    "#     revision=model_selection['revision']\n",
    "# )\n",
    "# model = meta.load_model()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9bd44e88fc360663",
   "metadata": {},
   "outputs": [],
   "source": [
    "%%time\n",
    "results = evaluation.run(\n",
    "    model=model,\n",
    "    verbosity=1,\n",
    "    output_folder=output_folder,\n",
    "    overwrite_results=True,\n",
    ")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "733e52ca41cf92a7",
   "metadata": {},
   "source": [
    "Evaluate Quora"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "61aea9a04468202f",
   "metadata": {},
   "outputs": [],
   "source": [
    "if model_selection[\"name\"].endswith(\"ir\"):\n",
    "    # quora is closer to a sentence similarity task than a retrieval one, as queries aren't proper user queries\n",
    "    # we thus embed them without the typical query prompt\n",
    "    model.prompts = {}\n",
    "    tasks = mteb.get_tasks(\n",
    "        tasks=[\n",
    "            \"QuoraRetrieval\",\n",
    "        ]\n",
    "    )\n",
    "\n",
    "    evaluation = mteb.MTEB(tasks=tasks)\n",
    "    results = evaluation.run(\n",
    "        model=model,\n",
    "        verbosity=1,\n",
    "        output_folder=output_folder,\n",
    "        overwrite_results=True,\n",
    "    )"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6a6c164e",
   "metadata": {},
   "source": [
    "### Asymmetric Mode\n",
    "\n",
    "Compute asymmetric mode scores: queries encoded by `leaf`, documents by the original teacher model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "487ba349",
   "metadata": {},
   "outputs": [],
   "source": [
    "class AsymmetricModel:\n",
    "    def __init__(\n",
    "        self,\n",
    "        doc_model: SentenceTransformer,\n",
    "        query_model: SentenceTransformer,\n",
    "    ) -> None:\n",
    "        self.doc_model = doc_model\n",
    "        self.query_model = query_model\n",
    "\n",
    "    def encode(self, sentences: List[str], **kwargs) -> np.ndarray | torch.Tensor:\n",
    "        if \"prompt_type\" not in kwargs:\n",
    "            kwargs[\"prompt_type\"] = None\n",
    "\n",
    "        match kwargs[\"prompt_type\"]:\n",
    "            case PromptType.query:\n",
    "                out = self.query_model.encode(sentences, prompt_name=\"query\", **kwargs)\n",
    "\n",
    "            case PromptType.document:\n",
    "                out = self.doc_model.encode(sentences, **kwargs)\n",
    "\n",
    "            case None:\n",
    "                print(\"No prompt type: using query (leaf) model for encoding\")\n",
    "                out = self.query_model.encode(sentences, **kwargs)\n",
    "            case _:\n",
    "                raise ValueError(f\"Encoding unknown type: {kwargs['prompt_type']}\")\n",
    "\n",
    "        if not isinstance(out, torch.Tensor):\n",
    "            out = torch.from_numpy(out)\n",
    "\n",
    "        out = out.to(\"cpu\")\n",
    "        return out"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4162af7f",
   "metadata": {},
   "outputs": [],
   "source": [
    "leaf = SentenceTransformer(model_selection[\"name\"], revision=model_selection[\"revision\"])\n",
    "teacher = SentenceTransformer(model_selection[\"teacher\"])\n",
    "\n",
    "asymm_model = AsymmetricModel(\n",
    "    query_model=leaf,\n",
    "    doc_model=teacher,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "848d8a5f",
   "metadata": {},
   "outputs": [],
   "source": [
    "%%time\n",
    "results = evaluation.run(\n",
    "    model=asymm_model,\n",
    "    verbosity=1,\n",
    "    output_folder=output_folder,\n",
    "    overwrite_results=True,\n",
    ")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}